All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

High-pressure jet-induced hydrodynamic cavitation as a pre-treatment step for avoiding cyanobacterial contamination during water purification

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985939%3A_____%2F20%3A00533657" target="_blank" >RIV/67985939:_____/20:00533657 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216305:26210/20:PU134556

  • Result on the web

    <a href="https://doi.org/10.1016/j.jenvman.2019.109862" target="_blank" >https://doi.org/10.1016/j.jenvman.2019.109862</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jenvman.2019.109862" target="_blank" >10.1016/j.jenvman.2019.109862</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    High-pressure jet-induced hydrodynamic cavitation as a pre-treatment step for avoiding cyanobacterial contamination during water purification

  • Original language description

    Due to specific physical properties, hydrodynamic cavitation (HC) is assigned to the powerful technologies for treating the biotic contamination in water including cyanobacteria. Contaminated water stream (CWS) can be cavitated directly by passing through some HC device, or indirectly when high-pressure jet stream (HPJS) is directed against its flow. Relatively small HPJS stream can thus treat a big volume of CWS in a short time or even work in continuous mode. Cyanobacteria floating in the CWS are forced to flow through the mixing cavitation zone. Within 2 h after single HC treatment, cyanobacterial cell suspensions showed disintegration of larger colonies and enhanced biomass sedimentation. Additional pre-treatment of CWS with low amounts of hydrogen peroxide (H2O2, 33, 66 and 99 mu mol/L) enhanced the effect of HC and led to further inhibition of cyanobacterial photosynthesis (maximum quantum yield of photosystem II decreased by up to 60%). The number of cyanobacterial cells in the treated CWS decreased continuously over 48 and 72 h, though some cells remained alive and were able to recover photosynthetic activity. The technique proposed (direction of a HPJS against a CWS and pretreatment with low H2O2 concentrations) provides (i) effective removal of cells from the water column, and (ii) reduced contamination by organic compounds released from the cells (especially cyanotoxins) as the cell membranes are not destroyed and the cells remain alive. This process shows potential as an effective pretreatment step in water purification processes related to cyanobacterial contamination.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10511 - Environmental sciences (social aspects to be 5.7)

Result continuities

  • Project

    <a href="/en/project/GA16-18316S" target="_blank" >GA16-18316S: Principles and mechanisms causing microorganism elimination by hydrodynamic cavitation</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Environmental Management

  • ISSN

    0301-4797

  • e-ISSN

  • Volume of the periodical

    255

  • Issue of the periodical within the volume

    FEB 1

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    7

  • Pages from-to

    1-7

  • UT code for WoS article

    000518708700017

  • EID of the result in the Scopus database

    2-s2.0-85075304838