Using the U-Net-like deep convolutional neural networks for precise tree recognition in very high resolution RGB (red, green, blue) satellite images
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985939%3A_____%2F21%3A00547970" target="_blank" >RIV/67985939:_____/21:00547970 - isvavai.cz</a>
Result on the web
<a href="http://hdl.handle.net/11104/0324109" target="_blank" >http://hdl.handle.net/11104/0324109</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/f12010066" target="_blank" >10.3390/f12010066</a>
Alternative languages
Result language
angličtina
Original language name
Using the U-Net-like deep convolutional neural networks for precise tree recognition in very high resolution RGB (red, green, blue) satellite images
Original language description
In this study, we have demonstrated an example of the use of the DL algorithm, relying on the proposed U-Net-like CNN architecture for the recognition of particular tree species in high-resolution RGB satellite images. We showed that traditional pixel-based ML approaches are influenced by false-positive decisions when objects captured in satellite images have the same color composition as tree crowns.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10618 - Ecology
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Forests
ISSN
1999-4907
e-ISSN
1999-4907
Volume of the periodical
12
Issue of the periodical within the volume
1
Country of publishing house
CH - SWITZERLAND
Number of pages
17
Pages from-to
66
UT code for WoS article
000610224900001
EID of the result in the Scopus database
2-s2.0-85099743219