All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Using the U-Net-like deep convolutional neural networks for precise tree recognition in very high resolution RGB (red, green, blue) satellite images

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985939%3A_____%2F21%3A00547970" target="_blank" >RIV/67985939:_____/21:00547970 - isvavai.cz</a>

  • Result on the web

    <a href="http://hdl.handle.net/11104/0324109" target="_blank" >http://hdl.handle.net/11104/0324109</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/f12010066" target="_blank" >10.3390/f12010066</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Using the U-Net-like deep convolutional neural networks for precise tree recognition in very high resolution RGB (red, green, blue) satellite images

  • Original language description

    In this study, we have demonstrated an example of the use of the DL algorithm, relying on the proposed U-Net-like CNN architecture for the recognition of particular tree species in high-resolution RGB satellite images. We showed that traditional pixel-based ML approaches are influenced by false-positive decisions when objects captured in satellite images have the same color composition as tree crowns.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10618 - Ecology

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Forests

  • ISSN

    1999-4907

  • e-ISSN

    1999-4907

  • Volume of the periodical

    12

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    17

  • Pages from-to

    66

  • UT code for WoS article

    000610224900001

  • EID of the result in the Scopus database

    2-s2.0-85099743219