All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Effects of environmental conditions on ICESat-2 terrain and canopy heights retrievals in Central European mountains

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985939%3A_____%2F22%3A00559822" target="_blank" >RIV/67985939:_____/22:00559822 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216208:11310/22:10445881 RIV/60460709:41330/22:91598

  • Result on the web

    <a href="https://doi.org/10.1016/j.rse.2022.113112" target="_blank" >https://doi.org/10.1016/j.rse.2022.113112</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.rse.2022.113112" target="_blank" >10.1016/j.rse.2022.113112</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Effects of environmental conditions on ICESat-2 terrain and canopy heights retrievals in Central European mountains

  • Original language description

    The ICESat-2 ATL08 land and vegetation product includes several flags that can be used for the assessment of LiDAR-environment interactions and can help select data of the highest quality. However, the usability of these flags has not been sufficiently studied to date. Here, we aimed to evaluate the effects of atmospheric scattering, the presence of snow, canopy cover, terrain slope, beam strength, and solar angle on the accuracy of terrain and canopy height of the ATL08 product as well as on providing recommendations on how to filter data in order to minimize errors. We evaluated the vertical accuracy of ATL08 terrain and canopy height in European mountains by comparing them with the digital terrain model and canopy height model derived from airborne laser scanning data. Our results indicate that the assessment of atmospheric effects using the cloud confidence flag (cloud_flag_atm, i.e. number of cloud layers) is better than the previously used multiple scattering warning flag (msw_flag). Day acquisitions with more than one layer of clouds yielded a terrain elevation RMSE of 3.22 m in forests while night acquisitions with no more than a single layer of clouds resulted in RMSE of 1.73 m. The increasing atmospheric scattering effects increased the photons' path length, resulting in terrain height underestimation. The presence of snow had a strong positive effect on the number of identified ground photons, independently of the canopy cover, but resulted in an overestimation of terrain height in higher altitudes. Accordingly, the presence of snow cover resulted in a significant underestimation of canopy height in forests. The canopy height in broadleaf/mixed as well as coniferous forests was in summer underestimated on average by 2.1 m (%ME of −15.3%) and 1.2 m (%ME of −8.2%), respectively, in winter, however, the underestimation increased to 8.5 m (%ME of −56.8%) and 5.7 m (%ME of −38.3%), respectively. Canopy height estimates had better accuracy for the strong beam (RMSE of 5.09 m, %RMSE of 35.4%) than for the weak beam (RMSE of 7.03 m, %RMSE of 51.3%). Our results show that the ATL08 terrain height accuracy decreases with uneven distribution of signal photons within individual segments and further deteriorates with increasing terrain slope. Filtering out segments with poor distribution of photons, more than one layer of clouds during the day, and snow cover in high altitudes is the best approach for minimizing the error while maximizing the number of segments left for subsequent analysis.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10511 - Environmental sciences (social aspects to be 5.7)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Remote Sensing of Environment

  • ISSN

    0034-4257

  • e-ISSN

    1879-0704

  • Volume of the periodical

    279

  • Issue of the periodical within the volume

    SEP 15

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    15

  • Pages from-to

    113112

  • UT code for WoS article

    000830907500003

  • EID of the result in the Scopus database

    2-s2.0-85132318413