Climate shapes the seed germination niche of temperate flowering plants: a meta-analysis of European seed conservation data
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985939%3A_____%2F22%3A00560051" target="_blank" >RIV/67985939:_____/22:00560051 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1093/aob/mcac037" target="_blank" >https://doi.org/10.1093/aob/mcac037</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1093/aob/mcac037" target="_blank" >10.1093/aob/mcac037</a>
Alternative languages
Result language
angličtina
Original language name
Climate shapes the seed germination niche of temperate flowering plants: a meta-analysis of European seed conservation data
Original language description
Background and Aims Interactions between ecological factors and seed physiological responses during the establishment phase shape the distribution of plants. Yet, our understanding of the functions and evolution of early-life traits has been limited by the scarcity of large-scale datasets. Here, we tested the hypothesis that the germination niche of temperate plants is shaped by their climatic requirements and phylogenetic relatedness, using germination data sourced from a comprehensive seed conservation database of the European flora (ENSCOBASE). Methods We performed a phylogenetically informed Bayesian meta-analysis of primary data, considering 18 762 germination tests of 2418 species from laboratory experiments conducted across all European geographical regions. We tested for the interaction between species' climatic requirements and germination responses to experimental conditions including temperature, alternating temperature, light and dormancy-breaking treatments, while accounting for between-study variation related to seed sources and seed lot physiological status. Key Results Climate was a strong predictor of germination responses. In warm and seasonally dry climates the seed germination niche includes a cold-cued germination response and an inhibition determined by alternating temperature regimes and cold stratification, while in climates with high temperature seasonality opposite responses can be observed. Germination responses to scarification and light were related to seed mass but not to climate. We also found a significant phylogenetic signal in the response of seeds to experimental conditions, providing evidence that the germination niche is phylogenetically constrained. Nevertheless, phylogenetically distant lineages exhibited common germination responses under similar climates. Conclusion This is the first quantitative meta-analysis of the germination niche at a continental scale. Our findings showed that the germination niches of European plants exhibit evolutionary convergence mediated by strong pressures at the macroclimatic level. In addition, our methodological approach highlighted how large datasets generated by conservation seed banking can be valuable sources to address questions in plant macroecology and evolution.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10611 - Plant sciences, botany
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Annals of Botany
ISSN
0305-7364
e-ISSN
1095-8290
Volume of the periodical
129
Issue of the periodical within the volume
7
Country of publishing house
GB - UNITED KINGDOM
Number of pages
12
Pages from-to
775-786
UT code for WoS article
000787012000001
EID of the result in the Scopus database
2-s2.0-85132756755