All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Genome size is strongly linked to carbohydrate storage and weakly linked to root sprouting ability in herbs

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985939%3A_____%2F23%3A00582237" target="_blank" >RIV/67985939:_____/23:00582237 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216208:11310/23:10477321

  • Result on the web

    <a href="https://doi.org/10.1093/aob/mcad158" target="_blank" >https://doi.org/10.1093/aob/mcad158</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1093/aob/mcad158" target="_blank" >10.1093/aob/mcad158</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Genome size is strongly linked to carbohydrate storage and weakly linked to root sprouting ability in herbs

  • Original language description

    Background and Aims Several lines of evidence indicate that carbohydrate storage in plant below-ground organs might be positively related to genome size because both these plant properties represent resource sinks and can affect cell size, cell cycle time, water-use efficiency and plant growth. However, plants adapted to disturbance, such as root sprouters, could be an exception because their strategy would require higher carbohydrate reserves to fuel biomass production but small genomes to complete their cell cycles faster.Methods We used data from a field survey to test the relationship between genome size and the probability of root sprouting ability in 172 Central European herbaceous species. Additionally, we conducted a pot experiment with 19 herbaceous species with different sprouting ability (nine congeneric pairs plus one species), and measured root non-structural carbohydrate concentrations and pools at the end of a growing season.Key Results In the Central European flora, the probability of root sprouting ability was lower in large-genome species but this pattern was weak. In the pot experiment, both total non-structural and water-soluble carbohydrates (mainly fructans) were positively and non-linearly related to genome size, regardless of sprouting strategy. The concentrations of mono- and disaccharides and all carbohydrate pools showed no link to genome size, and starch was absent in large-genome species. The link between genome size and carbohydrate storage was less apparent at a small phylogenetic scale because we only observed a higher carbohydrate concentration in species with larger genomes for four of the species pairs.Conclusions Root sprouters may have smaller genomes because of their frequent occurrence in dry and open habitats. Large-genome species with presumably large cells and vacuoles could accumulate more water-soluble carbohydrates at the end of the growing season to fuel their growth and perhaps protect vulnerable organs from freezing early in the next season.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10611 - Plant sciences, botany

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Annals of Botany

  • ISSN

    0305-7364

  • e-ISSN

    1095-8290

  • Volume of the periodical

    132

  • Issue of the periodical within the volume

    5

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    12

  • Pages from-to

    1021-1032

  • UT code for WoS article

    001096631100001

  • EID of the result in the Scopus database

    2-s2.0-85183483603