All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Ecological significance of marcescence in Himalayan plants: Why is standing dead phytomass more important in demanding, resource-limited environments?

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985939%3A_____%2F24%3A00598888" target="_blank" >RIV/67985939:_____/24:00598888 - isvavai.cz</a>

  • Alternative codes found

    RIV/60076658:12310/24:43908001

  • Result on the web

    <a href="https://doi.org/10.1111/1365-2435.14513" target="_blank" >https://doi.org/10.1111/1365-2435.14513</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1111/1365-2435.14513" target="_blank" >10.1111/1365-2435.14513</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Ecological significance of marcescence in Himalayan plants: Why is standing dead phytomass more important in demanding, resource-limited environments?

  • Original language description

    Understanding mechanisms allowing plants to thrive in challenging conditions is critical for predicting their responses to global environmental change. An often overlooked ecological adaptation is marcescence, where leaves and stems are retained beyond their typical shedding time, with implications for nutrient recycling and carbon sequestration. Marcescence can be expected in plants with conservative resource-use strategies, especially in environments with limited resources and marked seasonality, such as deserts and alpine regions. However, the extent to which marcescence occurs in different taxa across different habitats and its relationship to seasonality and plant functioning as reflected in ecophysiological traits remains understudied. We studied 600 individuals across 40 Himalayan herb species found in desert, steppe, alpine and subnival habitats, spanning 3000-5400 m elevation. Marcescence was observed in 37 of the 40 species evaluated, with 57% of the sampled individuals displaying dead phytomass, indicating the widespread nature of this phenomenon in Himalayan ecosystems. Environment and plant traits emerged as significant factors influencing the amount of dead-standing biomass. These findings remained robust after accounting for intraspecific variation and phylogenetic inertia. Desert and steppe species exhibited greater marcescent biomass, characterized by 10-fold more dead stem biomass than alpine and subnival plants. In contrast, the proportion of dead phytomass increased with elevation due to increased dead leaf fraction. Taller desert species with heavily lignified stems and limited nitrogen and phosphorus content had high levels of stem marcescence, which not only may aid litter photodegradation and nutrient recycling but also deter herbivory and promote seed dispersal (tumbleweed). Conversely, slow-growing alpine and subnival plants with higher water-use efficiency, foliar C:N ratios and parenchymatic storage tissue rich in mobile carbohydrates had a high proportion of marcescent leaves, which may aid survival in these resource-limited environments by providing delayed nutrients through moisture-conserving mulch that also provides insulation and protection from frost. This study provides new insights into the complex interplay of habitat, seasonality and plant traits in dead phytomass retention in Himalayan plants. Marcescence is prevalent in resource-conservative species in highly seasonal, resource-limited habitats and may significantly shape the functioning and biodiversity of Himalayan ecosystems.Read the free Plain Language Summary for this article on the Journal blog.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10618 - Ecology

Result continuities

  • Project

    <a href="/en/project/GA21-26883S" target="_blank" >GA21-26883S: How global warming affects plant diversity and productivity in Himalayas? Combining in-situ and remote sensing approaches</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Functional Ecology

  • ISSN

    0269-8463

  • e-ISSN

    1365-2435

  • Volume of the periodical

    38

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    13

  • Pages from-to

    942-954

  • UT code for WoS article

    001153663000001

  • EID of the result in the Scopus database

    2-s2.0-85183846582