All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Composition of Deductions within the Propositions-As-Types Paradigm

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985955%3A_____%2F20%3A00535279" target="_blank" >RIV/67985955:_____/20:00535279 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1007/s11787-020-00260-3" target="_blank" >https://doi.org/10.1007/s11787-020-00260-3</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s11787-020-00260-3" target="_blank" >10.1007/s11787-020-00260-3</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Composition of Deductions within the Propositions-As-Types Paradigm

  • Original language description

    Kosta Došen argued in his papers Inferential Semantics (in Wansing, H. (ed.) Dag Prawitz on Proofs and Meaning, pp. 147–162. Springer, Berlin 2015) and On the Paths of Categories (in Piecha, T., Schroeder-Heister, P. (eds.) Advances in Proof-Theoretic Semantics, pp. 65–77. Springer, Cham 2016) that the propositions-as-types paradigm is less suited for general proof theory because-unlike proof theory based on category theory-it emphasizes categorical proofs over hypothetical inferences. One specific instance of this, Došen points out, is that the Curry-Howard isomorphism makes the associativity of deduction composition invisible. We will show that this is not necessarily the case.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    60301 - Philosophy, History and Philosophy of science and technology

Result continuities

  • Project

    <a href="/en/project/GA19-12420S" target="_blank" >GA19-12420S: Hyperintensional Meaning, Type Theory and Logical Deduction</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Logica Universalis

  • ISSN

    1661-8297

  • e-ISSN

  • Volume of the periodical

    14

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    13

  • Pages from-to

    481-493

  • UT code for WoS article

    000565490700001

  • EID of the result in the Scopus database

    2-s2.0-85090186027