Structural Completeness and Superintuitionistic Inquisitive Logics
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985955%3A_____%2F23%3A00575743" target="_blank" >RIV/67985955:_____/23:00575743 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1007/978-3-031-39784-4_12" target="_blank" >https://doi.org/10.1007/978-3-031-39784-4_12</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-39784-4_12" target="_blank" >10.1007/978-3-031-39784-4_12</a>
Alternative languages
Result language
angličtina
Original language name
Structural Completeness and Superintuitionistic Inquisitive Logics
Original language description
In this paper, the notion of structural completeness is explored in the context of a generalized class of superintuitionistic logics involving also systems that are not closed under uniform substitution. We just require that each logic must be closed under D-substitutions assigning to atomic formulas only disjunction-free formulas. For these systems we introduce four different notions of structural completeness and study how they are related. We focus on superintuitionistic inquisitive logics that validate a schema called Split and have the disjunction property. In these logics disjunction can be interpreted in the sense of inquisitive semantics as a question forming operator. It is shown that a logic is structurally complete with respect to D-substitutions if and only if it includes the weakest superintuitionistic inquisitive logic. Various consequences of this result are explored. For example, it is shown that every superintuitionistic inquisitive logic can be characterized by a Kripke model built up from D-substitutions. Additionally, we resolve a conjecture concerning superintuitionistic inquisitive logics due to Miglioli et al..
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
60301 - Philosophy, History and Philosophy of science and technology
Result continuities
Project
<a href="/en/project/GM21-23610M" target="_blank" >GM21-23610M: Logical Structure of Information Channels</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Logic, Language, Information, and Computation
ISBN
978-3-031-39783-7
ISSN
—
e-ISSN
—
Number of pages
17
Pages from-to
194-210
Publisher name
Springer
Place of publication
Cham
Event location
Halifax
Event date
Jul 11, 2023
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—