Cantor’s Diagonal Proof
Result description
Cantor’s diagonal proof is significant both because the central method of proof used in it has been subsequently applied in a number of other proofs, and because it is considered to confirm the existence of infinite sets whose size fundamentally and by an order of magnitude exceeds the size of the “classical” infinite set represented by all natural numbers, while their size can theoretically exceed every conceivable limit. Although Cantor’s proof is generally accepted by the scientific community, some experts are somewhat reserved about it. The aim of this paper is to present Cantor’s proof in an accessible way, while pointing out its (hidden) assumptions and possible problematic points, and pointing out that some of its underlying assumptions are not indisputable mathematical truths, but rather postulated propositions that may or may not be accepted.
Keywords
Cantor’s diagonal proofactual and potential infinityreal numbersset cardinalityrecursive function
The result's identifiers
Result code in IS VaVaI
Result on the web
DOI - Digital Object Identifier
Alternative languages
Result language
čeština
Original language name
Cantorův diagonální důkaz
Original language description
Cantorův diagonální důkaz je významný jednak proto, že jím použitá ústřední dokazovací metoda byla následně aplikována i v řadě dalších důkazů, jednak z toho důvodu, že je považován za potvrzující existenci nekonečných množin, které svojí velikostí zásadně a řádově přesahují velikost „klasického“ nekonečného souboru představovaného všemi přirozenými čísly, přičemž tato jejich velikost může teoreticky překročit každou myslitelnou mez. Ač bývá Cantorův důkaz obecně vědeckou komunitou přijímán, někteří odborníci k němu přistupují poněkud rezervovaně. Cílem tohoto pojednání je představit Cantorův důkaz přístupným způsobem a zároveň poukázat na jeho (skryté) předpoklady a možná problematická místa a upozornit na fakt, že některé z jeho výchozích předpokladů nejsou nějaké nezpochybnitelné matematické pravdy, ale spíše postulované teze, které mohou, ale nemusejí být přijaty.
Czech name
Cantorův diagonální důkaz
Czech description
Cantorův diagonální důkaz je významný jednak proto, že jím použitá ústřední dokazovací metoda byla následně aplikována i v řadě dalších důkazů, jednak z toho důvodu, že je považován za potvrzující existenci nekonečných množin, které svojí velikostí zásadně a řádově přesahují velikost „klasického“ nekonečného souboru představovaného všemi přirozenými čísly, přičemž tato jejich velikost může teoreticky překročit každou myslitelnou mez. Ač bývá Cantorův důkaz obecně vědeckou komunitou přijímán, někteří odborníci k němu přistupují poněkud rezervovaně. Cílem tohoto pojednání je představit Cantorův důkaz přístupným způsobem a zároveň poukázat na jeho (skryté) předpoklady a možná problematická místa a upozornit na fakt, že některé z jeho výchozích předpokladů nejsou nějaké nezpochybnitelné matematické pravdy, ale spíše postulované teze, které mohou, ale nemusejí být přijaty.
Classification
Type
JSC - Article in a specialist periodical, which is included in the SCOPUS database
CEP classification
—
OECD FORD branch
60301 - Philosophy, History and Philosophy of science and technology
Result continuities
Project
GA23-07119S: MEANING AS AN OBJECT – PRINCIPLES OF SEMANTIC THEORIES
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Teorie vědy
ISSN
1210-0250
e-ISSN
1804-6347
Volume of the periodical
45
Issue of the periodical within the volume
2
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
41
Pages from-to
153-193
UT code for WoS article
—
EID of the result in the Scopus database
2-s2.0-85180464224
Basic information
Result type
JSC - Article in a specialist periodical, which is included in the SCOPUS database
OECD FORD
Philosophy, History and Philosophy of science and technology
Year of implementation
2023