Symbolic Algebra as a Semiotic System
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985955%3A_____%2F23%3A00579156" target="_blank" >RIV/67985955:_____/23:00579156 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1007/978-3-030-19071-2_65-1" target="_blank" >https://doi.org/10.1007/978-3-030-19071-2_65-1</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Symbolic Algebra as a Semiotic System
Original language description
The invention of symbolic algebra in the 16th and 17th centuries fundamentally changed the way we do mathematics. If we want to understand this change and appreciate its importance, we must analyze it on two levels. One concerns the compositional function of algebraic symbols as tools for representing complexity: the other concerns the referential function of algebraic symbols which enables their use as tools for describing objects (such as polynomials), properties (such as irreducibility), relations (such as divisibility), and operations (such as factorization). The reconstruction of both the compositional function and the referential function of algebraic symbols requires the use of different analytic tools and the taking of different temporal perspectives. In this chapter we offer both: a reconstruction of the compositional function of algebraic symbols, and a reconstruction of their referential function.
Czech name
—
Czech description
—
Classification
Type
A - Audiovisual production
CEP classification
—
OECD FORD branch
60301 - Philosophy, History and Philosophy of science and technology
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
ISBN
—
Place of publication
—
Publisher/client name
—
Version
—
Carrier ID
—