Truth-Maker Semantics for Some Substructural Logics
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985955%3A_____%2F23%3A00582839" target="_blank" >RIV/67985955:_____/23:00582839 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1007/978-3-031-29415-0_11" target="_blank" >https://doi.org/10.1007/978-3-031-29415-0_11</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-29415-0_11" target="_blank" >10.1007/978-3-031-29415-0_11</a>
Alternative languages
Result language
angličtina
Original language name
Truth-Maker Semantics for Some Substructural Logics
Original language description
Fine (J Philos Log 43:549–577, 2014) developed a truthmaker semantics for intuitionistic logic, which is also called exact semantics, since it is based on a relation of exact verification between states and formulas. A natural question arises as to what are the limits of Fine’s approach and whether an exact semantics of similar kind can be constructed for other important non-classical logics. In our paper, we will generalize Fine’s approach and develop an exact semantics for some substructural logics. In particular, we will provide a truthmaker semantics for the Non-associative Lambek calculus and some of its extensions. This generalization will reveal some interesting connections between Fine’s recent work on truthmaker semantics and his early work on relevant logic.
Czech name
—
Czech description
—
Classification
Type
C - Chapter in a specialist book
CEP classification
—
OECD FORD branch
60301 - Philosophy, History and Philosophy of science and technology
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Book/collection name
Kit Fine on Truthmakers, Relevance, and Non-classical Logic
ISBN
978-3-031-29414-3
Number of pages of the result
16
Pages from-to
207-222
Number of pages of the book
799
Publisher name
Springer
Place of publication
Cham
UT code for WoS chapter
—