Testing many restrictions under heteroskedasticity
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985998%3A_____%2F23%3A00582611" target="_blank" >RIV/67985998:_____/23:00582611 - isvavai.cz</a>
Alternative codes found
RIV/00216208:11640/23:00574156
Result on the web
<a href="https://doi.org/10.1016/j.jeconom.2023.03.011" target="_blank" >https://doi.org/10.1016/j.jeconom.2023.03.011</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jeconom.2023.03.011" target="_blank" >10.1016/j.jeconom.2023.03.011</a>
Alternative languages
Result language
angličtina
Original language name
Testing many restrictions under heteroskedasticity
Original language description
We propose a hypothesis test that allows for many tested restrictions in a heteroskedastic linear regression model. The test compares the conventional F statistic to a critical value that corrects for many restrictions and conditional heteroskedasticity. This correction uses leave-one-out estimation to correctly center the critical value and leave-three-out estimation to appropriately scale it. The large sample properties of the test are established in an asymptotic framework where the number of tested restrictions may be fixed or may grow with the sample size, and can even be proportional to the number of observations. We show that the test is asymptotically valid and has non-trivial asymptotic power against the same local alternatives as the exact F test when the latter is valid. Simulations corroborate these theoretical findings and suggest excellent size control in moderately small samples, even under strong heteroskedasticity.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
50202 - Applied Economics, Econometrics
Result continuities
Project
<a href="/en/project/GA20-28055S" target="_blank" >GA20-28055S: ECONOMETRICS WITH OVERPARAMETERIZATION AND WEAK IDENTIFICATION</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Econometrics
ISSN
0304-4076
e-ISSN
1872-6895
Volume of the periodical
236
Issue of the periodical within the volume
1
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
19
Pages from-to
105473
UT code for WoS article
001032935200001
EID of the result in the Scopus database
2-s2.0-85163996332