All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Testing many restrictions under heteroskedasticity

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985998%3A_____%2F23%3A00582611" target="_blank" >RIV/67985998:_____/23:00582611 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216208:11640/23:00574156

  • Result on the web

    <a href="https://doi.org/10.1016/j.jeconom.2023.03.011" target="_blank" >https://doi.org/10.1016/j.jeconom.2023.03.011</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jeconom.2023.03.011" target="_blank" >10.1016/j.jeconom.2023.03.011</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Testing many restrictions under heteroskedasticity

  • Original language description

    We propose a hypothesis test that allows for many tested restrictions in a heteroskedastic linear regression model. The test compares the conventional F statistic to a critical value that corrects for many restrictions and conditional heteroskedasticity. This correction uses leave-one-out estimation to correctly center the critical value and leave-three-out estimation to appropriately scale it. The large sample properties of the test are established in an asymptotic framework where the number of tested restrictions may be fixed or may grow with the sample size, and can even be proportional to the number of observations. We show that the test is asymptotically valid and has non-trivial asymptotic power against the same local alternatives as the exact F test when the latter is valid. Simulations corroborate these theoretical findings and suggest excellent size control in moderately small samples, even under strong heteroskedasticity.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    50202 - Applied Economics, Econometrics

Result continuities

  • Project

    <a href="/en/project/GA20-28055S" target="_blank" >GA20-28055S: ECONOMETRICS WITH OVERPARAMETERIZATION AND WEAK IDENTIFICATION</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Econometrics

  • ISSN

    0304-4076

  • e-ISSN

    1872-6895

  • Volume of the periodical

    236

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    19

  • Pages from-to

    105473

  • UT code for WoS article

    001032935200001

  • EID of the result in the Scopus database

    2-s2.0-85163996332