Ultrafast excited-state dynamics of isocytosine
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081707%3A_____%2F16%3A00471961" target="_blank" >RIV/68081707:_____/16:00471961 - isvavai.cz</a>
Alternative codes found
RIV/00216224:14740/16:00091111
Result on the web
<a href="http://dx.doi.org/10.1039/c6cp01391k" target="_blank" >http://dx.doi.org/10.1039/c6cp01391k</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1039/c6cp01391k" target="_blank" >10.1039/c6cp01391k</a>
Alternative languages
Result language
angličtina
Original language name
Ultrafast excited-state dynamics of isocytosine
Original language description
The alternative nucleobase isocytosine has long been considered as a plausible component of hypothetical primordial informational polymers. To examine this hypothesis we investigated the excited-state dynamics of the two most abundant forms of isocytosine in the gas phase (keto and enol). Our surface-hopping nonadiabatic molecular dynamics simulations employing the algebraic diagrammatic construction to the second order [ADC(2)] method for the electronic structure calculations suggest that both tautomers undergo efficient radiationless deactivation to the electronic ground state with time constants which amount to tau(keto) = 182 fs and tau(enol) = 533 fs. The dominant photorelaxation pathways correspond to ring-puckering (pi pi* surface) and C = O stretching/N-H tilting (n pi* surface) for the enol and keto forms respectively. Based on these findings, we infer that isocytosine is a relatively photostable compound in the gas phase and in these terms resembles biologically relevant nucleobases. The estimated S-1> T-1 intersystem crossing rate constant of 8.02 x 10(10) s(-1) suggests that triplet states might also play an important role in the overall excited-state dynamics of the keto tautomer. The reliability of ADC(2)-based surface-hopping molecular dynamics simulations was tested against multireference quantum-chemical calculations and the potential limitations of the employed ADC(2) approach are briefly discussed.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BO - Biophysics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Physical Chemistry Chemical Physics
ISSN
1463-9076
e-ISSN
—
Volume of the periodical
18
Issue of the periodical within the volume
30
Country of publishing house
GB - UNITED KINGDOM
Number of pages
11
Pages from-to
20208-20218
UT code for WoS article
000381428600022
EID of the result in the Scopus database
—