All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

MD and QM/MM Study of the Quaternary HutP Homohexamer Complex with mRNA, L-Histidine Ligand, and Mg2+

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081707%3A_____%2F17%3A00486064" target="_blank" >RIV/68081707:_____/17:00486064 - isvavai.cz</a>

  • Alternative codes found

    RIV/61989592:15310/17:73584576

  • Result on the web

    <a href="http://dx.doi.org/10.1021/acs.jctc.7b00598" target="_blank" >http://dx.doi.org/10.1021/acs.jctc.7b00598</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1021/acs.jctc.7b00598" target="_blank" >10.1021/acs.jctc.7b00598</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    MD and QM/MM Study of the Quaternary HutP Homohexamer Complex with mRNA, L-Histidine Ligand, and Mg2+

  • Original language description

    The HutP protein from B. subtilis regulates histidine metabolism by interacting with an antiterminator mRNA hairpin in response to the binding of L-histidine and Mg2+. We studied the functional ligand-bound HutP hexamer complexed with two mRNAs using all-atom microsecond-scale explicit-solvent MD simulations performed with the Amber force fields. The experimentally observed protein-RNA interface exhibited good structural stability in the simulations with the exception of some fluctuations in an unusual adenine-threonine interaction involving two closely spaced H-bonds. We further investigated this interaction by comparing QM/MM and MM optimizations, using the QM region comprising almost 350 atoms described at the DFT-D3 level. The QM/MM method clearly improved the adenine-threonine interaction compared to MM, especially when the X H bond lengths were frozen during the MM optimization to mimic the use of SHAKE in the MD simulations. Thus, both the MM approximation and the use of SHAKE can compromise the description of H-bonds at protein RNA interfaces. The simulations also revealed a notable Mg2+-parameter dependence in the behavior of the ligand-binding pocket (LBP). With the SPC/E water model, the 12-6 Aqvist and Li&Merz parameters provided an entirely stable LBP structure, but the 12-6 Allner and 12-6-4 Li&Merz parametrizations resulted in a progressive loss of direct nitrogen Mg2+ LBP coordination. The Aliner and Li&Merz 12-6 parametrizations were also tested with the TIP3P water model, the LBP was destabilized in both cases. This illustrates the difficulty of consistently describing different Mg2+ interactions using nonpolarizable force fields. Overall, the simulations support the hypothesis that HutP protein becomes fully structured upon ligand binding. Subsequent RNA binding does not affect the protein structure, in keeping with the mechanism inferred from experimental structures.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10403 - Physical chemistry

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Chemical Theory and Computation

  • ISSN

    1549-9618

  • e-ISSN

  • Volume of the periodical

    13

  • Issue of the periodical within the volume

    11

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    13

  • Pages from-to

    5658-5670

  • UT code for WoS article

    000415911800042

  • EID of the result in the Scopus database