All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

p73, like its p53 homolog, shows preference for inverted repeats forming cruciforms

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081707%3A_____%2F18%3A00492335" target="_blank" >RIV/68081707:_____/18:00492335 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216224:14310/18:00108863

  • Result on the web

    <a href="http://dx.doi.org/10.1371/journal.pone.0195835" target="_blank" >http://dx.doi.org/10.1371/journal.pone.0195835</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1371/journal.pone.0195835" target="_blank" >10.1371/journal.pone.0195835</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    p73, like its p53 homolog, shows preference for inverted repeats forming cruciforms

  • Original language description

    p73 is a member of the p53 protein family and has essential functions in several signaling pathways involved in development, differentiation, DNA damage responses and cancer. As a transcription factor, p73 achieves these functions by binding to consensus DNA sequences and p73 shares at least partial target DNA binding sequence specificity with p53. Transcriptional activation by p73 has been demonstrated for more than fifty p53 targets in yeast and/or human cancer cell lines. It has also been shown previously that p53 binding to DNA is strongly dependent on DNA topology and the presence of inverted repeats that can form DNA cruciforms, but whether p73 transcriptional activity has similar dependence has not been investigated. Therefore, we evaluated p73 binding to a set of p53-response elements with identical theoretical binding affinity in their linear state, but different probabilities to form extra helical structures. We show by a yeast-based assay that transactivation in vivo correlated more with the relative propensity of a response element to form cruciforms than to its expected in vitro DNA binding affinity. Structural features of p73 target sites are therefore likely to be an important determinant of its transactivation function.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10608 - Biochemistry and molecular biology

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    PLoS ONE

  • ISSN

    1932-6203

  • e-ISSN

  • Volume of the periodical

    13

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    13

  • Pages from-to

  • UT code for WoS article

    000430290200060

  • EID of the result in the Scopus database