All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Improving the Performance of the Amber RNA Force Field by Tuning the Hydrogen-Bonding Interactions

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081707%3A_____%2F19%3A00510264" target="_blank" >RIV/68081707:_____/19:00510264 - isvavai.cz</a>

  • Alternative codes found

    RIV/61989592:15310/19:73597722

  • Result on the web

    <a href="https://pubs.acs.org/doi/10.1021/acs.jctc.8b00955" target="_blank" >https://pubs.acs.org/doi/10.1021/acs.jctc.8b00955</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1021/acs.jctc.8b00955" target="_blank" >10.1021/acs.jctc.8b00955</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Improving the Performance of the Amber RNA Force Field by Tuning the Hydrogen-Bonding Interactions

  • Original language description

    Molecular dynamics (MD) simulations became a leading tool for investigation of structural dynamics of nucleic acids. Despite recent efforts to improve the empirical potentials (force fields, ffs), RNA ifs have persisting deficiencies, which hamper their utilization in quantitatively accurate simulations. Previous studies have shown that at least two salient problems contribute to difficulties in the description of free-energy landscapes of small RNA motifs: (i) excessive stabilization of the unfolded single-stranded RNA ensemble by intramolecular base-phosphate and sugar-phosphate interactions and (ii) destabilization of the native folded state by underestimation of stability of base pairing. Here, we introduce a general ff term (gHBfix) that can selectively fine-tune nonbonding interaction terms in RNA ifs, in particular, the H bonds. The gHBfix potential affects the pairwise interactions between all possible pairs of the specific atom types, while all other interactions remain intact, i.e., it is not a structure-based model. In order to probe the ability of the gHBfix potential to refine the ff nonbonded terms, we performed an extensive set of folding simulations of RNA tetranucleotides and tetraloops. On the basis of these data, we propose particular gHBfix parameters to modify the AMBER RNA ff. The suggested parametrization significantly improves the agreement between experimental data and the simulation conformational ensembles, although our current ff version still remains far from being flawless. While attempts to tune the RNA ffs by conventional reparametrizations of dihedral potentials or nonbonded terms can lead to major undesired side effects, as we demonstrate for some recently published ffs, gHBfix has a clear promising potential to improve the If performance while avoiding introduction of major new imbalances.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10403 - Physical chemistry

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Chemical Theory and Computation

  • ISSN

    1549-9618

  • e-ISSN

  • Volume of the periodical

    15

  • Issue of the periodical within the volume

    5

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    18

  • Pages from-to

    3288-3305

  • UT code for WoS article

    000468242900045

  • EID of the result in the Scopus database