Molecular dissociation and proton transfer in aqueous methane solution under an electric field
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081707%3A_____%2F21%3A00554408" target="_blank" >RIV/68081707:_____/21:00554408 - isvavai.cz</a>
Result on the web
<a href="https://pubs.rsc.org/en/content/articlelanding/2021/CP/D1CP04202E" target="_blank" >https://pubs.rsc.org/en/content/articlelanding/2021/CP/D1CP04202E</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1039/d1cp04202e" target="_blank" >10.1039/d1cp04202e</a>
Alternative languages
Result language
angličtina
Original language name
Molecular dissociation and proton transfer in aqueous methane solution under an electric field
Original language description
Methane-water mixtures are ubiquitous in our solar system and they have been the subject of a wide variety of experimental, theoretical, and computational studies aimed at understanding their behaviour under disparate thermodynamic scenarios, up to extreme planetary ice conditions of pressures and temperatures [Lee and Scandolo, Nat. Commun., 2011, 2, 185]. Although it is well known that electric fields, by interacting with condensed matter, can produce a range of catalytic effects which can be similar to those observed when material systems are pressurised, to the best of our knowledge, no quantum-based computational investigations of methane-water mixtures under an electric field have been reported so far. Here we present a study relying upon state-of-the-art ab initio molecular dynamics simulations where a liquid aqueous methane solution is exposed to strong oriented static and homogeneous electric fields. It turns out that a series of field-induced effects on the dipoles, polarisation, and the electronic structure of both methane and water molecules are recorded. Moreover, upon increasing the field strength, increasing fractions of water molecules are not only re-oriented towards the field direction, but are also dissociated by the field, leading to the release of oxonium and hydroxyde ions in the mixture. However, in contrast to what is observed upon pressurisation (similar to 50 GPa), where the presence of the water counterions triggers methane ionisation and other reactions, methane molecules preserve their integrity up to the strongest field explored (i.e., 0.50 V angstrom(-1)). Interestingly, neither the field-induced molecular dissociation of neat water (i.e., 0.30 V angstrom(-1)) nor the proton conductivity typical of pure aqueous samples at these field regimes (i.e., 1.3 S cm(-1)) are affected by the presence of hydrophobic interactions, at least in a methane-water mixture containing a molar fraction of 40% methane.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10403 - Physical chemistry
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Physical Chemistry Chemical Physics
ISSN
1463-9076
e-ISSN
1463-9084
Volume of the periodical
23
Issue of the periodical within the volume
45
Country of publishing house
GB - UNITED KINGDOM
Number of pages
9
Pages from-to
25649-25657
UT code for WoS article
000718638100001
EID of the result in the Scopus database
2-s2.0-85120467741