All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Conformational Heterogeneity of RNA Stem-Loop Hairpins Bound to FUS-RNA Recognition Motif with Disordered RGG Tail Revealed by Unbiased Molecular Dynamics Simulations

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081707%3A_____%2F22%3A00569227" target="_blank" >RIV/68081707:_____/22:00569227 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216224:14310/22:00128191

  • Result on the web

    <a href="https://pubs.acs.org/doi/10.1021/acs.jpcb.2c06168" target="_blank" >https://pubs.acs.org/doi/10.1021/acs.jpcb.2c06168</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1021/acs.jpcb.2c06168" target="_blank" >10.1021/acs.jpcb.2c06168</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Conformational Heterogeneity of RNA Stem-Loop Hairpins Bound to FUS-RNA Recognition Motif with Disordered RGG Tail Revealed by Unbiased Molecular Dynamics Simulations

  • Original language description

    RNA-protein complexes use diverse binding strategies, ranging from structurally well-defined interfaces to completely disordered regions. Experimental characterization of flexible segments is challenging and can be aided by atomistic molecular dynamics (MD) simulations. Here, we used an extended set of microsecond-scale MD trajectories (400 its in total) to study two FUS-RNA constructs previously characterized by nuclear magnetic resonance (NMR) spectroscopy. The FUS protein contains a well-structured RNA recognition motif domain followed by a presumably disordered RGG tail that binds RNA stem-loop hairpins. Our simulations not only provide several suggestions complementing the experiments but also reveal major methodological difficulties in studies of such complex RNA-protein interfaces. Despite efforts to stabilize the binding via system-specific force-field adjustments, we have observed progressive distortions of the RNA-protein interface inconsistent with experimental data. We propose that the dynamics is so rich that its converged description is not achievable even upon stabilizing the system. Still, after careful analysis of the trajectories, we have made several suggestions regarding the binding. We identify substates in the RNA loops, which can explain the NMR data. The RGG tail localized in the minor groove remains disordered, sampling countless transient interactions with the RNA. There are long-range couplings among the different elements contributing to the recognition, which can lead to allosteric communication throughout the system. Overall, the RNA-FUS systems form dynamical ensembles that cannot be fully represented by single static structures. Thus, albeit imperfect, MD simulations represent a viable tool to investigate dynamic RNA-protein complexes.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    30210 - Clinical neurology

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Physical Chemistry B

  • ISSN

    1520-6106

  • e-ISSN

    1520-5207

  • Volume of the periodical

    126

  • Issue of the periodical within the volume

    45

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    15

  • Pages from-to

    9207-9221

  • UT code for WoS article

    000884868500001

  • EID of the result in the Scopus database

    2-s2.0-85141994803