All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

LIBS assessment of spatial photon-upconversion nanoparticle distribution in model plants (R. sativus and L. minor)

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081715%3A_____%2F19%3A00511557" target="_blank" >RIV/68081715:_____/19:00511557 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    LIBS assessment of spatial photon-upconversion nanoparticle distribution in model plants (R. sativus and L. minor)

  • Original language description

    In the present study, radish (Raphanus sativus L.) and common duckweed (Lemna minor L.) were treated with an aqueous dispersion of carboxylated silica-coated photon-upconversion nanoparticles containing rare-earth elements (Y, Yb, and Er). The total content of rare earths and their bioaccumulation factors were determined in the root, hypocotyl, and leaves of R. sativus after 72 hours, and in L. minor fronds after 168 hours. In R. sativus, translocation factors were determined as the ratio of rare earths content in hypocotyl versus roots and in leaves versus hypocotyl. The lengths of the root and hypocotyl in R. sativus, as well as the frond area in L. minor were monitored as toxicity end points. To distinguish rare-earth bioaccumulation patterns, two-dimensional maps of elemental distribution in the whole R. sativus plant and in L. minor fronds were obtained by using laser-induced breakdown spectroscopy with a lateral resolution of 100 μm. Obtained results revealed that the tested nanoparticles became adsorbed on L. minor fronds and R. sativus roots, and got transferred from roots through the hypocotyl into leaves in R. sativus. Our results show that bioaccumulation patterns and spatial distribution of rare earths in nanoparticle-treated plants differ from those of positive control (the mixture of YCl3, YbCl3, and ErCl3).

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10406 - Analytical chemistry

Result continuities

  • Project

    <a href="/en/project/GJ18-03367Y" target="_blank" >GJ18-03367Y: Photon upconversion barcoding for bioanalysis in droplet microfluidics</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    EMSLIBS 2019 Book of abstracts

  • ISBN

    978-80-88195-13-9

  • ISSN

  • e-ISSN

  • Number of pages

    2

  • Pages from-to

    78-79

  • Publisher name

    Spektroskopická společnost Jana Marka Marci

  • Place of publication

    Praha

  • Event location

    Brno

  • Event date

    Sep 8, 2019

  • Type of event by nationality

    EUR - Evropská akce

  • UT code for WoS article