Prediction of fracture toughness temperature dependence applying neural network
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081723%3A_____%2F11%3A00366644" target="_blank" >RIV/68081723:_____/11:00366644 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Prediction of fracture toughness temperature dependence applying neural network
Original language description
Reference temperature localizing the fracture toughness temperature diagram on temperature axis is predicted based on tensile test data. The regularization neural network is developed to solve the correlation of these properties. Three-point bend specimens were applied to determine fracture toughness. The fracture toughness transition dependence is quantified by means of master curve concept enabling to represent it by using one parameter, i.e. reference temperature. Tensile samples with circumferentialnotch are also examined. In total 29 data sets from low-alloy steels are applied for the analysis. A good correlation of predicted and experimentally determined values of reference temperature is found.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
JL - Fatigue and fracture mechanics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GAP108%2F10%2F0466" target="_blank" >GAP108/10/0466: Fracture behaviour prediction based on kvantification of local material response</a><br>
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Structural Integrity and Life
ISSN
1451-3749
e-ISSN
—
Volume of the periodical
11
Issue of the periodical within the volume
1
Country of publishing house
RS - THE REPUBLIC OF SERBIA
Number of pages
6
Pages from-to
9-14
UT code for WoS article
—
EID of the result in the Scopus database
—