Crack propagation from bi-material notches ? matched asymptotic procedure
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081723%3A_____%2F12%3A00370070" target="_blank" >RIV/68081723:_____/12:00370070 - isvavai.cz</a>
Alternative codes found
RIV/00216305:26210/12:PU97680
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Crack propagation from bi-material notches ? matched asymptotic procedure
Original language description
The methods based on the properties of the two-state integrals allow one to calculate the amplitude of singular and the other terms of the Williams? asymptotic expansion. The paper is focused on the use of the ?-integral, whose application is conditionedby the knowledge of the socalled auxiliary solution of the solved problem. On the other hand, the ?-integral can be applied to the analysis of the problems with various geometries, e.g. the analysis of the bi-material notches. The application of the ?-integral can be also extended to the matched asymptotic procedure, which allows one to predict the behavior of the cracked notches or following crack growth near the bimaterial interfaces.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
JL - Fatigue and fracture mechanics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GAP108%2F10%2F2049" target="_blank" >GAP108/10/2049: Crack initiation and propagation from interface-related singular stress concentrators</a><br>
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Key Engineering Materials
ISSN
1013-9826
e-ISSN
—
Volume of the periodical
488-489
Issue of the periodical within the volume
-
Country of publishing house
CH - SWITZERLAND
Number of pages
4
Pages from-to
416-419
UT code for WoS article
—
EID of the result in the Scopus database
—