Reconstruction of a 2D stress field around the tip of a sharp material inclusion
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081723%3A_____%2F16%3A00465823" target="_blank" >RIV/68081723:_____/16:00465823 - isvavai.cz</a>
Result on the web
<a href="http://www.sciencedirect.com/science/article/pii/S2452321616302529" target="_blank" >http://www.sciencedirect.com/science/article/pii/S2452321616302529</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.prostr.2016.06.241" target="_blank" >10.1016/j.prostr.2016.06.241</a>
Alternative languages
Result language
angličtina
Original language name
Reconstruction of a 2D stress field around the tip of a sharp material inclusion
Original language description
The stress distribution in the vicinity of a sharp material inclusion (SMI) tip exhibits a singular stress behavior. The strength of the stress singularity depends on material properties and geometry. The SMI is a special case of a general singular stress concentrator (GSSC). The stress field near a GSSC can be analytically described by means of Muskhelishvili plane elasticity based on complex variable function methods. Parameters necessary for the description are the exponents of singularity and generalized stress intensity factors (GSIFs). The stress field in the closest vicinity of an SMI tip is thus characterized by 1 or 2 singular exponents, and corresponding GSIFs. In order to describe a stress field further away from an SMI tip, the non-singular exponents, and factors corresponding to these non-singular exponents have to be taken into account. For given boundary conditions of the SMI, the exponents are calculated as an eigenvalue problem. Then, by formation of corresponding eigenvectors, the stress or displacement angular functions for each stress or displacement series term are constructed. The contribution of each stress or displacement series term function to the total stress and displacement field is given by the corresponding GSIF. The GSIFs are calculated by the over deterministic method. In the numerical example, the stress field for particular bi-material configurations and geometries is reconstructed using i) singular terms only ii) singular and non-singular terms. The reconstructed stress field polar plots are compared with FEA results.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
JL - Fatigue and fracture mechanics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA16-18702S" target="_blank" >GA16-18702S: AMIRI − Aggregate-Matrix-Interface Related Issues in silicate-based composites</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
21st European Conference on Fracture
ISBN
—
ISSN
2452-3216
e-ISSN
—
Number of pages
8
Pages from-to
1920-1927
Publisher name
Elsevier
Place of publication
Amsterdam
Event location
Catania
Event date
Jun 20, 2016
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000387976801121