Degradation of YSZ/EUCOR TBC Coating System during High Temperature Low Cycle Fatigue Tests
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081723%3A_____%2F17%3A00465121" target="_blank" >RIV/68081723:_____/17:00465121 - isvavai.cz</a>
Alternative codes found
RIV/00216305:26620/17:PU121343
Result on the web
<a href="http://dx.doi.org/10.4028/www.scientific.net/SSP.258.420" target="_blank" >http://dx.doi.org/10.4028/www.scientific.net/SSP.258.420</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4028/www.scientific.net/SSP.258.420" target="_blank" >10.4028/www.scientific.net/SSP.258.420</a>
Alternative languages
Result language
angličtina
Original language name
Degradation of YSZ/EUCOR TBC Coating System during High Temperature Low Cycle Fatigue Tests
Original language description
Thermal barrier coatings are widely used to protect the substrate from high temperature and extremely aggressive environments in gas engines. In the present article, authors have been studied degradation of complex thermal barrier coating system deposited on polycrystalline nickel superalloy IN 713LC. The substrate material was grit blasted with alumina (Al2O3) particles prior to air plasma deposition of CoNiCrAlY bond coat. Top coat consists of conventional zirconia (ZrO2) stabilized by yttria (Y2O3) -YSZ ceramic in combination with a eutectic nanocrystalline ceramic Eucor made of zirconia (ZrO2), alumina (Al2O3) and silicia (SiO2) –in the ratio of 50/50 in wt. %. The top coat was deposited using water stabilized plasma. Test specimens with the TBC coating system were fatigued under strain control condition in fully reversed symmetrical push-pull cycles at 900°C in air. The microstructure of TBC was characterized with scanning electron microscopy and energy dispersion X-ray analysis. The coating hardness and thickness were measured. Fracture surface and polished sections parallel to the specimen axis were examined to study damage mechanisms in coatings under cyclic loading at high temperature. TBC delamination was observed at the top coat/bond coat interface after cyclic loading at high temperature. Fatigue crack initiation sites are documented. Majority of fatigue cracks start from the surface and top coat/bond coat interface.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
20306 - Audio engineering, reliability analysis
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Materials Structure & Micromechanics of Fracture VIII
ISBN
978-3-03835-626-4
ISSN
1662-9779
e-ISSN
—
Number of pages
4
Pages from-to
420-423
Publisher name
Trans Tech Publications
Place of publication
Zürrich
Event location
Brno
Event date
Jun 27, 2016
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—