All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Microstructure and magnetism of Co2FeAl Heusler alloy prepared by arc and induction melting compared with planar flow casting

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081723%3A_____%2F18%3A00495974" target="_blank" >RIV/68081723:_____/18:00495974 - isvavai.cz</a>

  • Alternative codes found

    RIV/61989100:27240/18:10236152

  • Result on the web

    <a href="http://dx.doi.org/10.1063/1.4993698" target="_blank" >http://dx.doi.org/10.1063/1.4993698</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1063/1.4993698" target="_blank" >10.1063/1.4993698</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Microstructure and magnetism of Co2FeAl Heusler alloy prepared by arc and induction melting compared with planar flow casting

  • Original language description

    This paper is devoted to investigations of the structural and magnetic properties of the Co2FeAl Heusler alloy produced by three technologies. The alloys prepared by arc and induction melting have resulted in coarse-grained samples in contrast to the fine-grained ribbon-type sample prepared by planar flow casting. Scanning electron microscopy completed by energy dispersive X-ray spectroscopy, X-ray diffraction, Mossbauer spectroscopy, and magnetic methods sensitive to both bulk and surface were applied. The chemical composition was slightly different from the nominal only for the ribbon sample. From the viewpoint of magnetic properties, the bulk coercivity and remnant magnetization have followed the structure influenced by the technology used. Saturation magnetization was practically the same for samples prepared by arc and induction melting, whereas the magnetization of ribbon is slightly lower due to a higher Al content at the expense of iron and cobalt. The surface magnetic properties were markedly influenced by anisotropy, grain size, and surface roughness of the samples. The surface roughness and brittleness of the ribbon-type sample did not make domain structure observation possible. The other two samples could be well polished and their highly smooth surface has enabled domain structure visualization by both magneto-optical Kerr microscopy and magnetic force microscopy. (c) 2017 Author(s).

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10302 - Condensed matter physics (including formerly solid state physics, supercond.)

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    AIP ADVANCES

  • ISSN

    2158-3226

  • e-ISSN

  • Volume of the periodical

    8

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    10

  • Pages from-to

  • UT code for WoS article

    000428537100007

  • EID of the result in the Scopus database

    2-s2.0-85031906856