All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

How Nanoscale Dislocation Reactions Govern Low- Temperature and High-Stress Creep of Ni-Base Single Crystal Superalloys

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081723%3A_____%2F20%3A00534080" target="_blank" >RIV/68081723:_____/20:00534080 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.mdpi.com/2073-4352/10/2/134" target="_blank" >https://www.mdpi.com/2073-4352/10/2/134</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/cryst10020134" target="_blank" >10.3390/cryst10020134</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    How Nanoscale Dislocation Reactions Govern Low- Temperature and High-Stress Creep of Ni-Base Single Crystal Superalloys

  • Original language description

    The present work investigates gamma-channel dislocation reactions, which govern low-temperature (T = 750 degrees C) and high-stress (resolved shear stress: 300 MPa) creep of Ni-base single crystal superalloys (SX). It is well known that two dislocation families with different b-vectors are required to form planar faults, which can shear the ordered gamma'-phase. However, so far, no direct mechanical and microstructural evidence has been presented which clearly proves the importance of these reactions. In the mechanical part of the present work, we perform shear creep tests and we compare the deformation behavior of two macroscopic crystallographic shear systems [011 over bar ](111) and [112 over bar ](111). These two shear systems share the same glide plane but differ in loading direction. The [112 over bar ](111) shear system, where the two dislocation families required to form a planar fault ribbon experience the same resolved shear stresses, deforms significantly faster than the [011 over bar ](111) shear system, where only one of the two required dislocation families is strongly promoted. Diffraction contrast transmission electron microscopy (TEM) analysis identifies the dislocation reactions, which rationalize this macroscopic behavior.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20501 - Materials engineering

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Crystals

  • ISSN

    2073-4352

  • e-ISSN

  • Volume of the periodical

    10

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    15

  • Pages from-to

    134

  • UT code for WoS article

    000519704700002

  • EID of the result in the Scopus database

    2-s2.0-85081281283