Uniqueness and stability of activated dislocation shapes in crystals
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081723%3A_____%2F21%3A00545719" target="_blank" >RIV/68081723:_____/21:00545719 - isvavai.cz</a>
Alternative codes found
RIV/00216305:26210/21:PU139373
Result on the web
<a href="https://iopscience.iop.org/article/10.1088/1361-651X/abd041" target="_blank" >https://iopscience.iop.org/article/10.1088/1361-651X/abd041</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/1361-651X/abd041" target="_blank" >10.1088/1361-651X/abd041</a>
Alternative languages
Result language
angličtina
Original language name
Uniqueness and stability of activated dislocation shapes in crystals
Original language description
Simplified models of thermally activated dislocation glide constitute an important link between atomic-level studies of isolated dislocations and macroscopic thermodynamic properties of materials. These models rest upon the activation enthalpy, which is the energy to transform an initially straight dislocation into its activated state at finite applied stresses. Minimizing this activation enthalpy leads to a boundary value problem for the shape of the dislocation line. Besides two constant solutions corresponding to a straight dislocation in its stable and unstable states at the applied stress, there exist an infinite number of non-constant solutions. We investigate the characters of these solutions for dislocations anchored at their ends. Using the second variation of the activation enthalpy, we derive a set of conditions that define a unique activated state of the dislocation. The corresponding analysis demonstrates that the shape of the dislocation in this activated state must change with the applied stress to maintain the state of minimum activation enthalpy.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
<a href="/en/project/LQ1601" target="_blank" >LQ1601: CEITEC 2020</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Modelling and Simulation in Materials Science and Engineering
ISSN
0965-0393
e-ISSN
1361-651X
Volume of the periodical
29
Issue of the periodical within the volume
2
Country of publishing house
GB - UNITED KINGDOM
Number of pages
13
Pages from-to
025006
UT code for WoS article
000615217900001
EID of the result in the Scopus database
2-s2.0-85101842742