The Cost of Improving the Precision of the Variational Quantum Eigensolver for Quantum Chemistry
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081723%3A_____%2F22%3A00553532" target="_blank" >RIV/68081723:_____/22:00553532 - isvavai.cz</a>
Alternative codes found
RIV/00216224:14610/22:00125538
Result on the web
<a href="https://www.mdpi.com/2079-4991/12/2/243" target="_blank" >https://www.mdpi.com/2079-4991/12/2/243</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/nano12020243" target="_blank" >10.3390/nano12020243</a>
Alternative languages
Result language
angličtina
Original language name
The Cost of Improving the Precision of the Variational Quantum Eigensolver for Quantum Chemistry
Original language description
New approaches into computational quantum chemistry can be developed through the use of quantum computing. While universal, fault-tolerant quantum computers are still not available, and we want to utilize today's noisy quantum processors. One of their flagship applications is the variational quantum eigensolver (VQE)-an algorithm for calculating the minimum energy of a physical Hamiltonian. In this study, we investigate how various types of errors affect the VQE and how to efficiently use the available resources to produce precise computational results. We utilize a simulator of a noisy quantum device, an exact statevector simulator, and physical quantum hardware to study the VQE algorithm for molecular hydrogen. We find that the optimal method of running the hybrid classical-quantum optimization is to: (i) allow some noise in intermediate energy evaluations, using fewer shots per step and fewer optimization iterations, but ensure a high final readout precision, (ii) emphasize efficient problem encoding and ansatz parametrization, and (iii) run all experiments within a short time-frame, avoiding parameter drift with time. Nevertheless, current publicly available quantum resources are still very noisy and scarce/expensive, and even when using them efficiently, it is quite difficult to perform trustworthy calculations of molecular energies.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10301 - Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Nanomaterials
ISSN
2079-4991
e-ISSN
2079-4991
Volume of the periodical
12
Issue of the periodical within the volume
2
Country of publishing house
CH - SWITZERLAND
Number of pages
22
Pages from-to
243
UT code for WoS article
000747685100001
EID of the result in the Scopus database
2-s2.0-85122876060