All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

QUANTUM-MECHANICAL STUDY OF INTERNAL STRUCTURAL TRANSFORMATIONS IN Pb-SUPERSATURATED Pb-Sn ALLOYS

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081723%3A_____%2F24%3A00587874" target="_blank" >RIV/68081723:_____/24:00587874 - isvavai.cz</a>

  • Alternative codes found

    RIV/60461373:22310/24:43931334 RIV/00216224:14310/24:00138307 RIV/00216305:26620/23:PU152418

  • Result on the web

    <a href="http://dx.doi.org/10.37904/nanocon.2023.4749" target="_blank" >http://dx.doi.org/10.37904/nanocon.2023.4749</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.37904/nanocon.2023.4749" target="_blank" >10.37904/nanocon.2023.4749</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    QUANTUM-MECHANICAL STUDY OF INTERNAL STRUCTURAL TRANSFORMATIONS IN Pb-SUPERSATURATED Pb-Sn ALLOYS

  • Original language description

    Motivated by a decades-long controversy related to the crystal structure of Pb-supersaturated solid solutions of Pb in Sn, we have performed a quantum-mechanical study of these materials. Focusing on both body-centred-tetragonal beta-Sn and simple-hexagonal gamma-Sn structures, we have computed properties of two alloys with the chemical composition Pb5Sn11, i.e. 31.25 at. % Pb, which is close to the composition of the experimentally found alloy (30 at. % Pb). The 16-atom computational supercells were designed as multiples of the elemental beta- and gamma-Sn unit cells, where the Pb atoms were distributed according to the special quasi-random structure (SQS) concept. Full structural relaxations of both beta- and gamma-phase-based alloys resulted in very significant re-arrangements into structures which do not exhibit any apparent structural features typical for the original alloys, and are, therefore, difficult to classify. The formation energies of the beta- and gamma-phase-originating equilibrium phases are 50 meV/atom and 53 meV/atom, respectively. Therefore, they are not stable with respect to the decomposition into the elemental lead and tin. Moreover, our calculations of elastic constants of both phases revealed that they are close to mechanical instability. Our results indicate that the studied Pb-supersaturated Pb-Sn solid solutions may be prone to structural instability, transformations into different phases and decomposition. Our findings may contribute into the identification of the reason why the subsequent experimental studies did not reproduce the initial published data.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10302 - Condensed matter physics (including formerly solid state physics, supercond.)

Result continuities

  • Project

    <a href="/en/project/GA22-05801S" target="_blank" >GA22-05801S: Causes and mechanisms of degradation of tin-based materials with a low content of alloying elements</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    NANOCON 2023 Conference Proceedings

  • ISBN

    978-80-88365-15-0

  • ISSN

    2694-930X

  • e-ISSN

  • Number of pages

    7

  • Pages from-to

    15-21

  • Publisher name

    Tanger Ltd.

  • Place of publication

    Ostrava

  • Event location

    Brno

  • Event date

    Oct 18, 2023

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    001234125400002