All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Acceleration of Perfusion MRI Using Locally Low-Rank Plus Sparse Model

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081731%3A_____%2F15%3A00451441" target="_blank" >RIV/68081731:_____/15:00451441 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216305:26220/15:PU115145

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-319-22482-4_60" target="_blank" >http://dx.doi.org/10.1007/978-3-319-22482-4_60</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-319-22482-4_60" target="_blank" >10.1007/978-3-319-22482-4_60</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Acceleration of Perfusion MRI Using Locally Low-Rank Plus Sparse Model

  • Original language description

    Perfusion magnetic resonance imaging is a technique used in diagnostics and evaluation of therapy response, where the quantification is done by analyzing the perfusion curves. Perfusion- and permeabilityrelated tissue parameters can be obtained using advanced pharmacokinetic models, but, these models require high spatial and temporal resolution of the acquisition simultaneously. The resolution is usually increased by means of compressed sensing: the acquisition is accelerated by undersampling. However, these techniques need to be improved to achieve higher spatial resolution and/or to allow multislice acquisition. We propose a modification of the L+S model for the reconstruction of perfusion curves from the under-sampled data. This model assumes that perfusion data can be modelled as a superposition of locally low-rank data and data that are sparse in the spectral domain. We show that our model leads to a better performance compared to the other methods.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    JA - Electronics and optoelectronics

  • OECD FORD branch

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2015

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Latent Variable Analysis and Signal Separation. 12th International Conference, LVA/ICA 2015. Proceedings

  • ISBN

    978-3-319-22481-7

  • ISSN

    0302-9743

  • e-ISSN

  • Number of pages

    8

  • Pages from-to

    514-521

  • Publisher name

    Springer

  • Place of publication

    Zürich

  • Event location

    Liberec

  • Event date

    Aug 25, 2015

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000363785500060