All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Phyllotactic Arrangements of Optical Elements

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081731%3A_____%2F17%3A00478006" target="_blank" >RIV/68081731:_____/17:00478006 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1117/12.2265835" target="_blank" >http://dx.doi.org/10.1117/12.2265835</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1117/12.2265835" target="_blank" >10.1117/12.2265835</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Phyllotactic Arrangements of Optical Elements

  • Original language description

    Phyllotaxy studies arrangements of biological entities, e.g. a placement of seeds in the flower head. Vogel (1979) presented a phyllotactic model based on series of seeds ordered along a primary spiral. This arrangement allows each seed to occupy the same area within a circular flower head. Recently, a similar arrangement of diffraction primitives forming a planar relief diffractive structure was presented. The planar relief structure was used for benchmarking and testing purposes of the electron beam writer patterning process. This contribution presents the analysis of local periods and azimuths of optical phyllotactic arrangements. Two kinds of network characteristic triangles are introduced. If the discussed planar structure has appropriate size and density, diffraction of the incoming light creates characteristic a phyllotactic diffraction pattern. Algorithms enabling the analysis of such behavior were developed and they were validated by fabricated samples of relief structures. Combined and higher diffraction orders are also analyzed. Different approaches enabling the creation of phyllotactic diffractive patterns are proposed. E-beam lithography is a flexible technology for various diffraction gratings origination. The e-beam patterning typically allows for the creation of optical diffraction gratings in the first diffraction order. Nevertheless, this technology enables also more complex grating to be prepared, e.g. blazed gratings and zero order gratings. Moreover, the mentioned kinds of gratings can be combined within one planar relief structure. The practical part of the presented work deals with the nano patterning of such structures by using two different types of the e-beam pattern generators.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    21002 - Nano-processes (applications on nano-scale); (biomaterials to be 2.9)

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Holography: Advances and Modern Trends V. (Proceedings of SPIE 10233)

  • ISBN

    978-1-5106-0967-9

  • ISSN

    0277-786X

  • e-ISSN

  • Number of pages

    9

  • Pages from-to

  • Publisher name

    SPIE

  • Place of publication

    Bellingham

  • Event location

    Prague

  • Event date

    Apr 24, 2017

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000407472500048