All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Dynamic magnetic resonance imaging using compressed sensing with multi-scale low rank penalty

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081731%3A_____%2F17%3A00483859" target="_blank" >RIV/68081731:_____/17:00483859 - isvavai.cz</a>

  • Result on the web

    <a href="http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8053872" target="_blank" >http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8053872</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/TSP.2017.8076094" target="_blank" >10.1109/TSP.2017.8076094</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Dynamic magnetic resonance imaging using compressed sensing with multi-scale low rank penalty

  • Original language description

    In multi-scale low rank decomposition model, the data are assumed to be a sum of block-wise low rank matrices with different scales of block sizes. In many practical applications, data itself is not represented directly, yet in some transformation domain, e.g. the data acquired in the Fourier domain in context of magnetic resonance imaging (MRI). In this paper, we present a natural extension of the multi-scale low rank model and propose its combination with a measurement operator. This modification is necessary for utilization of the model in compressed sensing perfusion MRI, where the compressed acquisition is crucial to achieve high spatial and temporal resolutions. We compare the proposed method with the recent “low-rank+ sparse” method of Otazo, Candes & Sodickson and we show that the proposed method brings improvement in the quality of reconstructed intensity curves.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20601 - Medical engineering

Result continuities

  • Project

    <a href="/en/project/GA16-13830S" target="_blank" >GA16-13830S: Magnetic resonance perfusion imaging using compressed sensing</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    40th International Conference on Telecommunications and Signal Processing (TSP 2017)

  • ISBN

    978-1-5090-3982-1

  • ISSN

  • e-ISSN

  • Number of pages

    4

  • Pages from-to

    780-783

  • Publisher name

    IEEE

  • Place of publication

    Barcelona

  • Event location

    Barcelona

  • Event date

    Jul 5, 2017

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000425229000165