Use of waste substrates for the lipid production by yeasts of the genus Metschnikowia-Screening study
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081731%3A_____%2F21%3A00549263" target="_blank" >RIV/68081731:_____/21:00549263 - isvavai.cz</a>
Alternative codes found
RIV/00216305:26310/21:PU142549
Result on the web
<a href="https://www.mdpi.com/2076-2607/9/11/2295" target="_blank" >https://www.mdpi.com/2076-2607/9/11/2295</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/microorganisms9112295" target="_blank" >10.3390/microorganisms9112295</a>
Alternative languages
Result language
angličtina
Original language name
Use of waste substrates for the lipid production by yeasts of the genus Metschnikowia-Screening study
Original language description
Oleogenic yeasts are characterized by the ability to accumulate increased amounts of lipids under certain conditions. These microbial lipids differ in their fatty acid composition, which allows them to be widely used in the biotechnology industry. The interest of biotechnologists is closely linked to the rising prices of fossil fuels in recent years. Their negative environmental impact is caused by significantly increased demand for biodiesel. The composition of microbial lipids is very similar to vegetable oils, which provides great potential for use in the production of biodiesel. In addition, some oleogenic microorganisms are capable of producing lipids with a high proportion of unsaturated fatty acids. The presented paper´s main aim was to study the production of lipids and lipid substances by yeasts of the genus Metschnikowia, to cultivate crude waste animal fat to study its utilization by yeasts, and to apply the idea of circular economy in the biotechnology of Metschnikowia yeasts. The work focuses on the influence of various stress factors in the cultivation process, such as reduced temperature or nutritional stress through the use of various waste substrates, together with manipulating the ratio of carbon and nitrogen sources in the medium. Yeast production properties were monitored by several instrumental techniques, including gas chromatography and Raman spectroscopy. The amount of lipids and in particular the fatty acid composition varied depending on the strains studied and the culture conditions used. The ability of yeast to produce significant amounts of unsaturated fatty acids was also demonstrated in the work. The most suitable substrate for lipid production was a medium containing glycerol, where the amount of accumulated lipids in the yeast M. pulcherrima 1232 was up to 36%. In our work, the crude animal fat was used for the production of high-value lipids, which to the best of our knowledge is a new result. Moreover, quantitative screening of lipase enzyme activity cultivated on animal fat substrate on selected yeasts of the genus Metschnikowia was performed. We found that for the yeast utilizing glycerol, animal fat seems to be an excellent source of carbon. Therefore, the yeast conversion of crude processed animal fat to value-added products is a valuable process for the biotechnology and food industry.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10301 - Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Microorganisms
ISSN
2076-2607
e-ISSN
2076-2607
Volume of the periodical
9
Issue of the periodical within the volume
11
Country of publishing house
CH - SWITZERLAND
Number of pages
23
Pages from-to
2295
UT code for WoS article
000723780000001
EID of the result in the Scopus database
2-s2.0-85118337433