All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Evaluating Pauses in Holter ECG Signals

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081731%3A_____%2F21%3A00555164" target="_blank" >RIV/68081731:_____/21:00555164 - isvavai.cz</a>

  • Result on the web

    <a href="https://ieeexplore.ieee.org/document/9662914" target="_blank" >https://ieeexplore.ieee.org/document/9662914</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.23919/CinC53138.2021.9662914" target="_blank" >10.23919/CinC53138.2021.9662914</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Evaluating Pauses in Holter ECG Signals

  • Original language description

    Background: Information related to pauses in heart activity is an important output of ECG Holter monitoring reports. This information should be quickly assessed from inter-beat (RR) intervals only (a naïve approach). However, evaluating pauses in Holter ECGs recorded during usual daily activities can be more challenging due to signal lower quality. In this paper, we propose a method to improve pause detection in heart activity from Holter ECG recordings. Method: We used 978 recordings (length 45 seconds, 1-lead ECG, sampled at 200 or 250 Hz) with a known longest RR interval (from 1.12 to 19.0 seconds, mean duration of 2.72 ± 1.26 seconds). QRS complexes were detected by a convolutional neural network with a recurrent layer. This study started with the automated removal of suspicious QRS complexes by a QRS amplitude. Then we iterated through RR intervals, seeking saturated areas, missed QRS, or a strong noise, potentially, examined RR intervals were further refined. The longest interval was reported for each recording. Results: The ability to find life-threatening pauses improved from an F1 score of 0.95 to 0.97. Conclusion: The presented method improved pause detection in Holter ECG recordings compared to the naïve approach.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20601 - Medical engineering

Result continuities

  • Project

    <a href="/en/project/FW01010305" target="_blank" >FW01010305: Artificial Intelligence for Autonomous ECG Classification in Online Telemedicine Platform</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    2021 Computing in Cardiology (CinC)

  • ISBN

    978-166547916-5

  • ISSN

    2325-8861

  • e-ISSN

    2325-887X

  • Number of pages

    4

  • Pages from-to

    107

  • Publisher name

    IEEE

  • Place of publication

    New York

  • Event location

    Brno

  • Event date

    Sep 12, 2021

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article