All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Highly Sensitive Plasmonic Structures Utilizing a Silicon Dioxide Overlayer

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081731%3A_____%2F22%3A00561882" target="_blank" >RIV/68081731:_____/22:00561882 - isvavai.cz</a>

  • Alternative codes found

    RIV/61989100:27240/22:10250602

  • Result on the web

    <a href="https://www.mdpi.com/2079-4991/12/18/3090" target="_blank" >https://www.mdpi.com/2079-4991/12/18/3090</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/nano12183090" target="_blank" >10.3390/nano12183090</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Highly Sensitive Plasmonic Structures Utilizing a Silicon Dioxide Overlayer

  • Original language description

    In this paper, simple and highly sensitive plasmonic structures are analyzed theoretically and experimentally. A structure comprising a glass substrate with a gold layer, two adhesion layers of chromium, and a silicon dioxide overlayer is employed in liquid analyte sensing. The sensing properties of two structures with distinct protective layer thicknesses are derived based on a wavelength interrogation method. Spectral reflectance responses in the Kretschmann configuration with a coupling BK7 prism are presented, using the thicknesses of individual layers obtained by a method of spectral ellipsometry. In the measured spectral reflectance, a pronounced dip is resolved, which is strongly red-shifted as the refractive index (RI) of the analyte increases. Consequently, a sensitivity of 15,785 nm per RI unit (RIU) and a figure of merit (FOM) of 37.9 RIU-1 are reached for the silicon dioxide overlayer thickness of 147.5 nm. These results are in agreement with the theoretical ones, confirming that both the sensitivity and FOM can be enhanced using a thicker silicon dioxide overlayer. The designed structures prove to be advantageous as their durable design ensures the repeatability of measurement and extends their employment compared to regularly used structures for aqueous analyte sensing.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10306 - Optics (including laser optics and quantum optics)

Result continuities

  • Project

    <a href="/en/project/EF17_048%2F0007399" target="_blank" >EF17_048/0007399: New Composite Materials for Environmental Applications</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Nanomaterials

  • ISSN

    2079-4991

  • e-ISSN

    2079-4991

  • Volume of the periodical

    12

  • Issue of the periodical within the volume

    18

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    13

  • Pages from-to

    3090

  • UT code for WoS article

    000857073900001

  • EID of the result in the Scopus database

    2-s2.0-85138715666