All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Gold nanosystems for the detection of molecules using surface-enhanced Raman scatterings (SERS)

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081731%3A_____%2F22%3A00567652" target="_blank" >RIV/68081731:_____/22:00567652 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Gold nanosystems for the detection of molecules using surface-enhanced Raman scatterings (SERS)

  • Original language description

    Raman spectroscopy is a non-destructive analytical technique to analyze the chemical structure of molecules by a phenomenon known as Raman scattering, which occurs by an inelastic interaction of photons with the valence electrons in molecular bonds. However, Raman scattering can be hard to observe due to other, more frequent phenomena, such as Rayleigh scattering or fluorescence. SERS (surface-enhanced Raman spectroscopy) uses localized surface plasmon resonance (LSPR) of metal nanostructures to amplify Raman scattering. LSPR is a coherent oscillation of conduction electrons that arises from the interaction of electromagnetic radiation with metal nanostructures. The amplification of Raman scattering occurs when the analyte is adsorbed on the surface of such nanostructure and the strong localized electric field interacts with the electrons in its molecular bonds. Signal amplification of several orders of magnitude can be achieved, commonly 103 or more. In our work, we determined the presence of a selected bacterial species by multi-functionalized golden nanoparticles called SERS-tags, which have their surface modified with an antibody and a Raman reporter. The antibody allows the nanoparticles to bind to the surface of a concrete bacterial species based on the antigen-antibody affinity. When the targeted bacterium is covered with the nanoparticles, the Raman reporter signal is amplified by SERS, providing specific and strong Raman response. Therefore, when the Raman reporter signal is detected in a sample, it confirms the presence of the specific bacterium on a single-cell level.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10406 - Analytical chemistry

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    LA62. Sborník příspěvků multioborové konference LASER62

  • ISBN

    978-80-87441-30-5

  • ISSN

  • e-ISSN

  • Number of pages

    3

  • Pages from-to

    9-11

  • Publisher name

    Ústav přístrojové techniky AV ČR

  • Place of publication

    Brno

  • Event location

    Lednice

  • Event date

    Nov 9, 2022

  • Type of event by nationality

    EUR - Evropská akce

  • UT code for WoS article