All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Utilization of Deep Learning and Expert Feature Classifier for Detection of Heart Murmurs

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081731%3A_____%2F22%3A00583010" target="_blank" >RIV/68081731:_____/22:00583010 - isvavai.cz</a>

  • Result on the web

    <a href="https://ieeexplore.ieee.org/document/10081763" target="_blank" >https://ieeexplore.ieee.org/document/10081763</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.22489/CinC.2022.041" target="_blank" >10.22489/CinC.2022.041</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Utilization of Deep Learning and Expert Feature Classifier for Detection of Heart Murmurs

  • Original language description

    This paper introduces our solution (ISIBrno-AIMT team) to the Physionet Challenge 2022. The main goal of the challenge was a classification of heart murmurs from phonocardiographic recordings into three mutually exclusive classes (i.e., present, unknown, and not present) and to determine whether the patient's overall status is Normal or Abnormal. We propose a deep learning method that classifies whether there is a heart murmur in the phonocardiographic recording and also provides heart sound segmen-tation. Furthermore, the expert feature classifier assesses whether the patient's status is normal or abnormal. Our approach achieved a hidden test challenge score of 0.755 in the murmur classification task and a score of 12313 in the patient outcome classification task. Our team was ranked as 9th and 12th out of 40 teams in the official ranking for murmur and outcome classification, respectively.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20601 - Medical engineering

Result continuities

  • Project

    <a href="/en/project/FW01010305" target="_blank" >FW01010305: Artificial Intelligence for Autonomous ECG Classification in Online Telemedicine Platform</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    2022 Computing in Cardiology (CinC)

  • ISBN

    979-8-3503-0097-0

  • ISSN

    2325-8861

  • e-ISSN

    2325-887X

  • Number of pages

    4

  • Pages from-to

    041

  • Publisher name

    IEEE

  • Place of publication

    New York

  • Event location

    Tampere

  • Event date

    Sep 4, 2022

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article