Equivalent operator preconditioning for elliptic problems
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68145535%3A_____%2F09%3A00328616" target="_blank" >RIV/68145535:_____/09:00328616 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Equivalent operator preconditioning for elliptic problems
Original language description
The numerial solution of linear elliptic partial differential equations most often involves a finite element or finite difference discretization. To preserve sparsity, the arising system is normally solved using an iterative solution method, commonly a preconditioned conjugate gradient method.Preconditioning is a crucial part of such a solution process. In order to enable the solution of very large-scale systems, it is desirable that the total computational cost will be of optimal order, i.e. proportional to the degrees of freedom of the paaroximation used, which also induces mesh independent convergence of the iteration. This paper surveys the equivalent operator approach, which has proven to provide an efficient general framework to construct such preconditioners.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2009
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Numerical Algorithms
ISSN
1017-1398
e-ISSN
—
Volume of the periodical
50
Issue of the periodical within the volume
3
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
84
Pages from-to
—
UT code for WoS article
000264495700005
EID of the result in the Scopus database
—