Preconditioning of matrices partitioned in 2 x 2 block form: Eigenvalue estimates and Schwarz DD for mixed FEM
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68145535%3A_____%2F10%3A00350871" target="_blank" >RIV/68145535:_____/10:00350871 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Preconditioning of matrices partitioned in 2 x 2 block form: Eigenvalue estimates and Schwarz DD for mixed FEM
Original language description
A general framework for constructing preconditioners for 2 x 2 block matrices is presented, and eigenvalue bounds of the preconditioned matrices are derived The results are applied both for positive-definite problems and for saddle point matrices of regularized forms. Eigenvalues and minimal polynomials for certain limit cases are derived A domain decomposition method, with overlap, is used to solve the pivot block of the regularized matrix. Special attention is paid to problems with heterogeneous coefficients Copyright (C) 2010 John Wiley & Sons, Ltd.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
JC - Computer hardware and software
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA105%2F09%2F1830" target="_blank" >GA105/09/1830: Multiscale modelling and X-Ray thomography in geotechnics</a><br>
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2010
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Numerical Linear Algebra with Applications
ISSN
1070-5325
e-ISSN
—
Volume of the periodical
17
Issue of the periodical within the volume
5
Country of publishing house
GB - UNITED KINGDOM
Number of pages
23
Pages from-to
—
UT code for WoS article
000283388500005
EID of the result in the Scopus database
—