A reliable incremental method of computing the limit load in deformation plasticity based on compliance: Continuous and discrete setting
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68145535%3A_____%2F16%3A00465662" target="_blank" >RIV/68145535:_____/16:00465662 - isvavai.cz</a>
Alternative codes found
RIV/00216208:11320/16:10330717
Result on the web
<a href="http://www.sciencedirect.com/science/article/pii/S0377042716300917" target="_blank" >http://www.sciencedirect.com/science/article/pii/S0377042716300917</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cam.2016.02.035" target="_blank" >10.1016/j.cam.2016.02.035</a>
Alternative languages
Result language
angličtina
Original language name
A reliable incremental method of computing the limit load in deformation plasticity based on compliance: Continuous and discrete setting
Original language description
The aim of this paper is to introduce an enhanced incremental procedure that can be used for the numerical evaluation and reliable estimation of the limit load. A conventional incremental method of limit analysis is based on parametrization of the respective variational formulation by the loading parameter ζ∈(0,ζlim)ζ∈(0,ζlim), where ζlimζlim is generally unknown. The enhanced incremental procedure is operated in terms of an inverse mapping ψ:α↦ζψ:α↦ζ where the parameter αα belongs to (0,+)(0,+) and its physical meaning is work of applied forces at the equilibrium state. The function ψψ is continuous, nondecreasing and its values tend to ζlimζlim as α+α+. Reduction of the problem to a finite element subspace associated with a mesh ThTh generates the discrete limit parameter ζlim,hζlim,h and the discrete counterpart ψhψh to the function ψψ. We prove pointwise convergence ψhψψhψ and specify a class of yield functions for which ζlim,hζlimζlim,hζlim. These convergence results enable to find reliable lower and upper bounds of ζlimζlim. Numerical tests confirm computational efficiency of the suggested method.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Computational and Applied Mathematics
ISSN
0377-0427
e-ISSN
—
Volume of the periodical
303
Issue of the periodical within the volume
September 2016
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
15
Pages from-to
156-170
UT code for WoS article
000375177500013
EID of the result in the Scopus database
2-s2.0-84961783214