All
All

What are you looking for?

All
Projects
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Solution of Inverse Problems using Bayesian Approach with Application to Estimation of Material Parameters in Darcy Flow

Result description

Standard numerical methods for solving inverse problems in partial differential equations do not reflect a possible inaccuracy in observed data. However, in real engineering applications we cannot avoid uncertainties caused by measurement errors. In the Bayesian approach every unknown or inaccurate value is treated as a random variable. This paper presents an application of the Bayesian inverse approach to the reconstruction of a porosity field as a parameter of the Darcy flow problem. However, this framework can be applied to a wide range of problems that involve some amount of uncertainty. Here the material field is modeled as a Gaussian random field, which is expressed as a function of several random variables. The information about these random variables is given by the resulting posterior distribution, which is then studied using the Cross-Entropy method and samples are generated using the Metropolis-Hastings algorithm.

Keywords

Bayesian statisticsCross-Entropy methodDarcy flowGaussian random fieldinverse problem

The result's identifiers

Alternative languages

  • Result language

    angličtina

  • Original language name

    Solution of Inverse Problems using Bayesian Approach with Application to Estimation of Material Parameters in Darcy Flow

  • Original language description

    Standard numerical methods for solving inverse problems in partial differential equations do not reflect a possible inaccuracy in observed data. However, in real engineering applications we cannot avoid uncertainties caused by measurement errors. In the Bayesian approach every unknown or inaccurate value is treated as a random variable. This paper presents an application of the Bayesian inverse approach to the reconstruction of a porosity field as a parameter of the Darcy flow problem. However, this framework can be applied to a wide range of problems that involve some amount of uncertainty. Here the material field is modeled as a Gaussian random field, which is expressed as a function of several random variables. The information about these random variables is given by the resulting posterior distribution, which is then studied using the Cross-Entropy method and samples are generated using the Metropolis-Hastings algorithm.

  • Czech name

  • Czech description

Classification

  • Type

    Jimp - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10102 - Applied mathematics

Result continuities

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Advances in Electrical and Electronic Engineering

  • ISSN

    1336-1376

  • e-ISSN

  • Volume of the periodical

    15

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    SK - SLOVAKIA

  • Number of pages

    9

  • Pages from-to

    258-266

  • UT code for WoS article

    000409044400017

  • EID of the result in the Scopus database

    2-s2.0-85025665571

Result type

Jimp - Article in a specialist periodical, which is included in the Web of Science database

Jimp

OECD FORD

Applied mathematics

Year of implementation

2017