Neural Tree for Estimating the Uniaxial Compressive Strength of Rock Materials
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68145535%3A_____%2F18%3A00506924" target="_blank" >RIV/68145535:_____/18:00506924 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-319-76351-4_1" target="_blank" >http://dx.doi.org/10.1007/978-3-319-76351-4_1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-76351-4_1" target="_blank" >10.1007/978-3-319-76351-4_1</a>
Alternative languages
Result language
angličtina
Original language name
Neural Tree for Estimating the Uniaxial Compressive Strength of Rock Materials
Original language description
Uniaxial Compressive Strength (UCS) is the most important parameter that quantifies the rock strength. However, determination of the UCS in laboratory is very expensive and time-consuming. Therefore, common index tests like point load (Is-50), ultrasonic velocity test (Vp), block punch index (BPI) test, rebound hardness (SRH) test, physical properties have been used to predict the UCS. The objective of this work is to develop a predictive model using a neural tree predictor that estimates the UCS with high accuracy and assess the effectiveness of different index tests in predicting the UCS of rock materials. UCS and indices such as BPI, Is-50, SRH, Vp, effective porosity and density were determined for the granite, schist, and sandstone. The constructed model predicted the UCS with a high accuracy and in a quick time (9 s). Additionally, the destructive mechanical rock indices BPI and Is-50 proved to be the best index tests to estimate the UCS.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
20301 - Mechanical engineering
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Hybrid Intelligent Systems - HIS 2017
ISBN
978-3-319-76351-4
ISSN
2194-5357
e-ISSN
2194-5365
Number of pages
10
Pages from-to
1-10
Publisher name
Springer
Place of publication
Cham
Event location
New Dehli
Event date
Dec 14, 2017
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000456078600001