All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Neural Tree for Estimating the Uniaxial Compressive Strength of Rock Materials

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68145535%3A_____%2F18%3A00506924" target="_blank" >RIV/68145535:_____/18:00506924 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-319-76351-4_1" target="_blank" >http://dx.doi.org/10.1007/978-3-319-76351-4_1</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-319-76351-4_1" target="_blank" >10.1007/978-3-319-76351-4_1</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Neural Tree for Estimating the Uniaxial Compressive Strength of Rock Materials

  • Original language description

    Uniaxial Compressive Strength (UCS) is the most important parameter that quantifies the rock strength. However, determination of the UCS in laboratory is very expensive and time-consuming. Therefore, common index tests like point load (Is-50), ultrasonic velocity test (Vp), block punch index (BPI) test, rebound hardness (SRH) test, physical properties have been used to predict the UCS. The objective of this work is to develop a predictive model using a neural tree predictor that estimates the UCS with high accuracy and assess the effectiveness of different index tests in predicting the UCS of rock materials. UCS and indices such as BPI, Is-50, SRH, Vp, effective porosity and density were determined for the granite, schist, and sandstone. The constructed model predicted the UCS with a high accuracy and in a quick time (9 s). Additionally, the destructive mechanical rock indices BPI and Is-50 proved to be the best index tests to estimate the UCS.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20301 - Mechanical engineering

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Hybrid Intelligent Systems - HIS 2017

  • ISBN

    978-3-319-76351-4

  • ISSN

    2194-5357

  • e-ISSN

    2194-5365

  • Number of pages

    10

  • Pages from-to

    1-10

  • Publisher name

    Springer

  • Place of publication

    Cham

  • Event location

    New Dehli

  • Event date

    Dec 14, 2017

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000456078600001