All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Effect of frequency change during pulsed waterjet interaction with stainless steel

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68145535%3A_____%2F19%3A00494159" target="_blank" >RIV/68145535:_____/19:00494159 - isvavai.cz</a>

  • Alternative codes found

    RIV/60460709:41310/19:79249

  • Result on the web

    <a href="https://link.springer.com/chapter/10.1007/978-3-319-99353-9_10" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-319-99353-9_10</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-319-99353-9_10" target="_blank" >10.1007/978-3-319-99353-9_10</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Effect of frequency change during pulsed waterjet interaction with stainless steel

  • Original language description

    In the present work a detailed effect of pulsating water jet treatment with the variation of standoff distance on the flat austenitic stainless steel surface has been studied. During the experimentation, at a traverse speed of 30 mm/s accidently the change in frequency was encountered in the repeated test (under same treatment condition) which has been reported in this work. The frequency was changed from f = 20.11 kHz to f = 20.27 kHz during the treatment process at the pressure of p = 70 MPa with variation in standoff distance was increased from z = 5 mm up to z = 101 mm (with step distance of 2 mm between successive standoff distance). The change in microstructural topography of the treated surface under the above-mentioned conditions was observed using scanning electron microscopy (SEM). The strengthening mechanism on the surface and sub-surface region due to the plastic deformation phenomenon caused by the impact of the pulsating jet was evaluated by Vickers microhardness test. The micro hardness test was conducted along the depth of the treated region to analyze the effects in the sub-surface layers. Also, the erosion stages at different standoff distance was evaluated by scanning the surface by optical MicroProf FRT profilometer in order to analyze the nature of erosion phenomenon with the variation of standoff distance and frequency during the treatment process. The results obtained indicates that the change in frequency of the pulsations and the variation in standoff distance has a significant impact on the surface integrity of the treated material. As compare to the untreated surface the hardness of the treated surface was increased up to a certain depth and the higher frequency of pulsations has shown better improvement in the hardness values. The above observations elaborated the effect of an important parameter frequency and standoff distance for better and effective utilization of the technology for the surface treatment application.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20501 - Materials engineering

Result continuities

  • Project

    <a href="/en/project/LO1406" target="_blank" >LO1406: Institute of clean technologies for mining and utilization of raw materials for energy use -Sustainability program</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Advances in Manufacturing Engineering and Materials

  • ISBN

    978-3-319-99353-9

  • ISSN

    2195-4356

  • e-ISSN

  • Number of pages

    12

  • Pages from-to

    85-96

  • Publisher name

    Springer Nature Switzerland AG 2019

  • Place of publication

    Basel

  • Event location

    Nový Smokovec

  • Event date

    Jun 18, 2018

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000462541600010