A coarse–fine mesh stabilization for an alternating Schwarz domain decomposition method
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68145535%3A_____%2F19%3A00509847" target="_blank" >RIV/68145535:_____/19:00509847 - isvavai.cz</a>
Result on the web
<a href="https://onlinelibrary.wiley.com/doi/pdf/10.1002/nla.2236" target="_blank" >https://onlinelibrary.wiley.com/doi/pdf/10.1002/nla.2236</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/nla.2236" target="_blank" >10.1002/nla.2236</a>
Alternative languages
Result language
angličtina
Original language name
A coarse–fine mesh stabilization for an alternating Schwarz domain decomposition method
Original language description
Domain decomposition methods can be solved in various ways. In this paper, domain decomposition in strips is used. It is demonstrated that a special version of the Schwarz alternating iteration method coupled with coarse-fine-mesh stabilization leads to a very efficient solver, which is easy to implement and has a behavior nearly independent of mesh and problem parameters. The novelty of the method is the use of alternating iterations between odd- and even-numbered subdomains and the replacement of the commonly used coarse-mesh stabilization method with coarse-fine-mesh stabilization.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
<a href="/en/project/LQ1602" target="_blank" >LQ1602: IT4Innovations excellence in science</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Numerical Linear Algebra with Applications
ISSN
1070-5325
e-ISSN
—
Volume of the periodical
26
Issue of the periodical within the volume
3
Country of publishing house
GB - UNITED KINGDOM
Number of pages
19
Pages from-to
1-19
UT code for WoS article
000462879200001
EID of the result in the Scopus database
2-s2.0-85062783333