All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Admissible and Attainable Convergence Behavior of Block Arnoldi and GMRES

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68145535%3A_____%2F20%3A00524496" target="_blank" >RIV/68145535:_____/20:00524496 - isvavai.cz</a>

  • Result on the web

    <a href="https://epubs.siam.org/doi/10.1137/19M1272469" target="_blank" >https://epubs.siam.org/doi/10.1137/19M1272469</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1137/19M1272469" target="_blank" >10.1137/19M1272469</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Admissible and Attainable Convergence Behavior of Block Arnoldi and GMRES

  • Original language description

    It is well-established that any nonincreasing convergence curve is possible for GMRES and a family of pairs $(A,b)$ can be constructed for which GMRES exhibits a given convergence curve with $A$ having arbitrary spectrum. No analogue of this result has been established for block GMRES, wherein multiple right-hand sides are considered. By reframing the problem as a single linear system over a ring of square matrices, we develop convergence results for block Arnoldi and block GMRES. In particular, we show what convergence behavior is admissible for block GMRES and how the matrices and right-hand sides producing any admissible behavior can be constructed. Moreover, we show that the convergence of the block Arnoldi method for eigenvalue approximation can be almost fully independent of the convergence of block GMRES for the same coefficient matrix and the same starting vectors.nnnn

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10102 - Applied mathematics

Result continuities

  • Project

    <a href="/en/project/LQ1602" target="_blank" >LQ1602: IT4Innovations excellence in science</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS

  • ISSN

    1095-7162

  • e-ISSN

  • Volume of the periodical

    41

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    23

  • Pages from-to

    464-486

  • UT code for WoS article

    000546981500005

  • EID of the result in the Scopus database

    2-s2.0-85084943132