Comparison of selected FETI coarse space projector implementation strategies
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68145535%3A_____%2F20%3A00534423" target="_blank" >RIV/68145535:_____/20:00534423 - isvavai.cz</a>
Alternative codes found
RIV/61989100:27120/20:10245150 RIV/61989100:27240/20:10245150 RIV/61989100:27730/20:10245150
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S0167819120300016?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0167819120300016?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.parco.2020.102608" target="_blank" >10.1016/j.parco.2020.102608</a>
Alternative languages
Result language
angličtina
Original language name
Comparison of selected FETI coarse space projector implementation strategies
Original language description
This paper deals with scalability improvements of the FETI (Finite Element Tearing and Interconnecting) domain decomposition method solving elliptic PDEs. The main bottleneck of FETI is the solution of a coarse problem that is part of the projector onto the natural coarse space. This paper introduces and compares two strategies for the FETI coarse problem solution. The first one is a classical solution with either direct (factorization + forward/backward substitutions) or iterative solvers (conjugate gradient and deflated conjugate gradient methods). The second one is the assembly of an explicit inverse using a direct solver with the coarse problem solution realised by dense matrix-vector products. MPI subcommunica- tors are employed to increase arithmetic intensity and, crucially, to decrease the communication cost. PERMON library for quadratic programming implementing the Total FETI variant of FETI was used for the numerical experiments.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Parallel Computing
ISSN
0167-8191
e-ISSN
—
Volume of the periodical
93
Issue of the periodical within the volume
May 2020
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
11
Pages from-to
102608
UT code for WoS article
000527290700001
EID of the result in the Scopus database
2-s2.0-85079201095