All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Influence of the frequency and flow rate of a pulsating water jet on the wear damage of tantalum

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68145535%3A_____%2F21%3A00545758" target="_blank" >RIV/68145535:_____/21:00545758 - isvavai.cz</a>

  • Alternative codes found

    RIV/61989100:27230/21:10248586

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S0043164821002829?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0043164821002829?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.wear.2021.203893" target="_blank" >10.1016/j.wear.2021.203893</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Influence of the frequency and flow rate of a pulsating water jet on the wear damage of tantalum

  • Original language description

    The present study focuses on the hydrodynamic erosion of tantalum in the form of the disintegration depth when exposed to periodic impingements of water clusters. Discrete water clusters were generated using a pulsating water jet at excitation frequencies of 20 and 40 kHz to modulate the continuous jet into a pulsating jet. The influence of the technological parameters, such as the excitation frequency (20 and 40 kHz), supply pressure (20, 30, and 40 MPa), nozzle diameter (0.3 and 0.5 mm), and time exposure (0.25–128 s), on the erosion depth of tantalum was observed. The disintegration depth trend showed a proportional nature with the number of impingements directed to the tantalum surface keeping all other technological parameters constant. An increase in the water flow rate from 0.76 l/min (p = 20 MPa, d = 0.3 mm) to 3 l/min (p = 40 MPa, d = 0.5 mm), reduces the time exposure required for the initiation of disintegration from 4 s (80,800 impingements with f = 20 kHz) to 1 s (40,600 impingements with f = 40 kHz), respectively. The effect of change in the excitation frequency from 20 to 40 kHz was observed in form of an increase in the erosion depth from 1587 to 1762 μm at p = 40 MPa, d = 0.5 mm, and t = 128 s. The surface morphology observed using scanning electron microscopy revealed erosion features, such as craters, micro-holes, surface upheaving, and tearing, on the tantalum surface. No significant change in the mean micro-hardness values were observed near the periphery of the eroded cavity as compared to original material due to high-density of tantalum which obstruct the propagation of shock waves into the material. The outcome of the study enhances the knowledge regarding the hydrodynamic erosion of high-density materials (ρ > 15 kg/mm3) in response to the water flow rate, frequency, and time exposure.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20301 - Mechanical engineering

Result continuities

  • Project

    <a href="/en/project/EF17_049%2F0008407" target="_blank" >EF17_049/0008407: Innovative and additive manufacturing technology - new technological solutions for 3D printing of metals and composite materials</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Wear

  • ISSN

    0043-1648

  • e-ISSN

    1873-2577

  • Volume of the periodical

    477

  • Issue of the periodical within the volume

    July 2021

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    10

  • Pages from-to

    203893

  • UT code for WoS article

    000679170600003

  • EID of the result in the Scopus database

    2-s2.0-85104346368