All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Dynamic pluvial flash flooding hazard forecast using weather radar data

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68145535%3A_____%2F21%3A00549549" target="_blank" >RIV/68145535:_____/21:00549549 - isvavai.cz</a>

  • Alternative codes found

    RIV/61989100:27350/21:10247655

  • Result on the web

    <a href="https://www.mdpi.com/2072-4292/13/15/2943/htm" target="_blank" >https://www.mdpi.com/2072-4292/13/15/2943/htm</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/rs13152943" target="_blank" >10.3390/rs13152943</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Dynamic pluvial flash flooding hazard forecast using weather radar data

  • Original language description

    Pluvial flash floods are among the most dangerous weather-triggered disasters, usually affecting watersheds smaller than 100 km2, with a short time to peak discharge (from a few minutes to a few hours) after causative rainfall. Several warning systems in the world try to use this time lag to predict the location, extent, intensity, and time of flash flooding. They are based on numerical hydrological models processing data collected by on-ground monitoring networks, weather radars, and precipitation nowcasting. However, there may be areas covered by weather radar data, in which the network of ground-based precipitation stations is not sufficiently developed or does not even exist (e.g., in an area covered by portable weather radar). We developed a method usable for designing an early warning system based on a different philosophy for such a situation. This method uses weather radar data as a 2D signal carrying information on the current precipitation distribution over the monitored area, and data on the watershed and drainage network in the area. The method transforms (concentrates) the 2D signal on precipitation distribution into a 1D signal carrying information on potential runoff distribution along the drainage network. For sections of watercourses where a significant increase in potential runoff can be expected (i.e., a significant increase of the 1D signal strength is detected), a warning against imminent flash floods can be possibly issued. The whole curve of the potential runoff development is not essential for issuing the alarm, but only the significant leading edge of the 1D signal is important. The advantage of this procedure is that results are obtained quickly and independent of any on-ground monitoring system, the disadvantage is that it does not provide the exact time of the onset of a flash flooding or its extent and intensity. The generated alert only warns that there is a higher flash flooding hazard in a specific section of the watercourse in the coming hours. The forecast is presented as a dynamic map of the flash flooding hazard distribution along the segments of watercourses.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10501 - Hydrology

Result continuities

  • Project

    <a href="/en/project/VG20132015106" target="_blank" >VG20132015106: Disaster management support scenarios using geoinformation technologies</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Remote Sensing

  • ISSN

    2072-4292

  • e-ISSN

    2072-4292

  • Volume of the periodical

    13

  • Issue of the periodical within the volume

    15

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    29

  • Pages from-to

    2943

  • UT code for WoS article

    000682216700001

  • EID of the result in the Scopus database

    2-s2.0-85111743028