Exact inverse solution techniques for a class of complex valued block two-by-two linear systems
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68145535%3A_____%2F22%3A00556739" target="_blank" >RIV/68145535:_____/22:00556739 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/content/pdf/10.1007/s11075-021-01180-z.pdf" target="_blank" >https://link.springer.com/content/pdf/10.1007/s11075-021-01180-z.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11075-021-01180-z" target="_blank" >10.1007/s11075-021-01180-z</a>
Alternative languages
Result language
angličtina
Original language name
Exact inverse solution techniques for a class of complex valued block two-by-two linear systems
Original language description
By taking a complex factorization of the Schur complement matrix into consideration, we present practical expressions for the inverses of a class of complex valued block two-by-two matrices. Then, based on the obtained practical inverse expressions, some efficient exact inverse solution methods are presented for solving the related linear systems within both iterative refinement and Krylov subspace accelerations. Numerical experiments indicate that in most cases the proposed exact inverse methods perform better than the MINRES and GMRES methods accelerated by some existing efficient preconditioners.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
<a href="/en/project/LQ1602" target="_blank" >LQ1602: IT4Innovations excellence in science</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Numerical Algorithms
ISSN
1017-1398
e-ISSN
1572-9265
Volume of the periodical
90
Issue of the periodical within the volume
August 2021
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
20
Pages from-to
79-98
UT code for WoS article
000682449500002
EID of the result in the Scopus database
2-s2.0-85112614347