Continuation Newton Methods with Applications to Plasticity
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68145535%3A_____%2F24%3A00586681" target="_blank" >RIV/68145535:_____/24:00586681 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/book/10.1007/978-3-031-56208-2" target="_blank" >https://link.springer.com/book/10.1007/978-3-031-56208-2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-56208-2_5" target="_blank" >10.1007/978-3-031-56208-2_5</a>
Alternative languages
Result language
angličtina
Original language name
Continuation Newton Methods with Applications to Plasticity
Original language description
This contribution is focused on severely nonlinear systems of equations with nonsmooth operators. A continuation Newton method with a smoothing operator is suggested and its convergence analyzed. Then the method is applied to elasto-plasticity with hardening. Finally, another continuation method convenient for an elastic-perfectly plastic problem is introduced and used for finding the so-called limit load.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Large-Scale Scientific Computations
ISBN
978-3-031-56207-5
ISSN
0302-9743
e-ISSN
1611-3349
Number of pages
8
Pages from-to
61-68
Publisher name
Springer Nature Switzerland AG
Place of publication
Cham
Event location
Sozopol
Event date
Jun 5, 2023
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
001279202200006