All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Efficient Solution of Stochastic Galerkin Matrix Equations via Reduced Basis and Tensor Train Approximation

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68145535%3A_____%2F24%3A00586684" target="_blank" >RIV/68145535:_____/24:00586684 - isvavai.cz</a>

  • Alternative codes found

    RIV/61989100:27240/24:10257007

  • Result on the web

    <a href="https://link.springer.com/book/10.1007/978-3-031-56208-2" target="_blank" >https://link.springer.com/book/10.1007/978-3-031-56208-2</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-56208-2_20" target="_blank" >10.1007/978-3-031-56208-2_20</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Efficient Solution of Stochastic Galerkin Matrix Equations via Reduced Basis and Tensor Train Approximation

  • Original language description

    This contribution focuses on the development of a computational method to efficiently solve matrix equations arising from stochastic Galerkin (SG) discretization of steady Darcy flow problems with uncertain and separable permeability fields. The proposed method consists of a two-step solution process. Firstly, we construct a reduced basis for the finite element portion of the discretization using the Monte Carlo (MC) method. We consider various sampling techniques for the MC method. Secondly, we use a tensor polynomial basis to handle the stochastic aspect of the problem and employ a tensor-train (TT) approximation to approximate the overall solution of the reduced SG system. To enhance the convergence of the TT approximation, we use an implicitly preconditioned system with a Kronecker-type preconditioner. Moreover, we also develop low-cost error indicators to assess the accuracy of both thereduced basis and the final solution of the reduced system.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10102 - Applied mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Large-Scale Scientific Computations

  • ISBN

    978-3-031-56207-5

  • ISSN

    0302-9743

  • e-ISSN

    1611-3349

  • Number of pages

    10

  • Pages from-to

    205-214

  • Publisher name

    Springer Nature Switzerland AG

  • Place of publication

    Cham

  • Event location

    Sozopol

  • Event date

    Jun 5, 2023

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    001279202200021